

Heap Based Priority Queues

4-8-2011

Opening Discussion

 Minute essay comments
 “Principles of Debugging II” :)
 Why is the heap always O(log N)?

Binary Heaps as Trees

 You can view a binary heap as a type of binary
tree, though our final implementation will not
actually use a binary tree.

 Binary heaps are complete trees that have
heap ordering.
 A complete tree is one that only starts filling the

next row after the one above it is completely full.
We will fill rows from left to right adding in new
nodes until we have to move down to the next row.

 Heap ordering is simply the property that each node
has a higher priority than its children.

Adding

 When we add to a binary heap we simply place
the new element at the next free spot on the
tree. We then have to shift things to restore
heap ordering. We refer to the new node as a
bubble which moves up through the tree until it
comes to rest.

Removing

 The only item we can remove from the tree is
the root, which has the highest priority thanks to
the heap ordering. To keep the heap complete
we move the last element up to the root and let
it sink down through the tree until it comes to
rest.

 Both of these operations are always O(log n)
because the heap is complete.

Heaps as Arrays

 The tree structure is nice for visualizing the
heap, but it is extremely inefficient for
implementation.

 If we order the nodes starting at 1 you will see
nice mathematical relationships between
parents and children. We use this numbering as
an index into a array and store the heap in an
array or an array based list.

Code

 Let's write a binary heap.

Minute Essay

 What questions do you have about binary
heaps?

 No class on Monday or Wednesday of next
week.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

