

Inheritance and Subtyping

1-21-2011

Opening Discussion

 Minute Essay Comments
 Passing mechanism in Scala.
 There is no ++ in Scala. Minor sacrifice for

flexibility.
 Demonstration of Any.

Inheritance in Drawer

 In the in-class project we are going to have
multiple types of things that we can draw.

 We will have a Drawable type at the top of a
hierarchy. Anything that can be drawn will come
below that.

 There is also a command supertype and
different commands will come under it.

Abstract

 Abstract types are types you can't instantiate.
You have to make subtypes and instantiate
those.

 It is quite common that supertypes know
something should be possible, but have no idea
how to do it.

 They might also know that a value is needed,
but not know what the value should be.

 These members are called abstract. In Scala
simply don't initialize them. Class must be
labeled abstract.

Protected

 The protected visibility allows subtypes to see
the members.

 This visibility isn't used all that commonly. Only
when you have methods or members that
subtypes need to deal with but which really isn't
important to any other code.

Anonymous Classes

 You can make a subtype of a given type that
doesn't have its own name. We did so last
semester.

 The syntax is like this.
 new SuperType(args) { ... }
 The args are optional if they aren't needed.

 If the supertype is abstract then
implementations of the abstract members must
appear in the {}.

Writing Code

 I want to spend the rest of the day working a bit
on the drawing application.

Minute Essay

 Can you think of anything that needs to be a
type hierarchy in the project you are planning to
do? If so, what is it?

 Quiz next class.
 If you use a local copy of the book, remember

to pull it down occasionally so you get updates.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

