

Trees

3-19-2012

Opening Discussion

 World of abundance.
 Discuss format change.

What is a Tree?

● You are all familiar with what normal trees look
like. In CS we use the term somewhat
differently, and more formally.

● To describe trees we need some basic
terminology
 Node - an element of a tree. One node is

designated as the “root”
 Edge - a directed connection from one node to

another.

Tree Criteria

● Every node, C, has exactly one incoming edge
from another node, P. P is said to be the
parent of child node C. Root has 0.

● There is a unique path from the root to any
node. The number of edges on that path is
called the path length. It is also called the
depth of the node.

● A node with no children is called a leaf. The
path length from a node to the deepest leaf in
the height of that node.

More Terms

● Following the parent-child analogy, children of
the same node are called siblings. We also call
any node on a path below a given node a
descendant and any above an ancestor.

● You might also hear the size of a node referred
to as the number of descendants of a node,
including itself.

● We can also define a tree as either empty, or a
root with zero or more subtrees where the root
connects to the roots of those subtrees.

General Tree Implementation

● In a general tree, each node can have zero or
more children. That is a lot of flexibility. We
want a class to represent nodes. To get this
flexibility we can use a linked list. Each node
has pointers to a first child and the next sibling.

● It might be just as easy to have the child
member be an Buffer that we put Nodes in.
File systems are a good example of this.

Traversals

● As with any data structure one of the things you
want to be able to do is to traverse through all
the elements.

● Think for a while about how you would do this?
There is even a question about the order you
traverse them in. Do you want to process a
node before you process its children or after? If
before we call it a preorder traversal. If after it
is a postorder traversal.

Traversals and Recursion

● The simplest way to do a traversal is through
recursion. If you want to do it with a loop you
have to implement a data structure to store
some nodes or have the tree specially set up.

● The traverse function takes a node and calls
itself once with each child node. It also does
whatever the visit operation is.

● Preorder does a visit before going to children
and postorder visits after going to children.

● Breadth first uses a queue, not recursion.

Coding

 For our first example of a tree, I want to make
our formula parser parse to a tree.

 If we introduce variables we might evaluate the
same formula many times with different values.
It is inefficient to do the same string processing
over and over.

 It is more efficient to parse the string once and
build a tree that represents the formula then do
the evaluation on that tree.

 Let's code this.

Minute Essay

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

