Opening Discussion

- Midterm grades.
- Minute essay comments:
 - Uses of graphs?
 - Assignment #2 – use recursion.
 - Reason to parse a formula to a tree.
Sometimes we want to limit how many children a node has. One of the most commonly used trees in programming is the binary tree where no node has more than 2 children.

The children are often called left and right.
For a binary tree there is an extra type of traversal called an in-order traversal where the node is visited between the recursion down left and right.

Equations are great examples of trees. We typically write them out in the in-order. We could just as well write them out in post-order or pre-order.
One of the best uses of binary trees is the binary search tree. They make a more efficient implementation of the map ADT.

In this type of tree, we store a key and data in every node and below any node we put lesser key values to the left and greater key values to the right.

We find elements by going down the tree always going left or right. This gives us behavior like a binary search, but the tree is more flexible because adds and removes are quite efficient as well.
Adding and Removing

The code for both adding and removing from a binary tree begins like a search that keeps track of previous (much like a singly linked list).

- The add always goes to a leaf and adds the new element to the proper side.
- The remove replaces the node we are removing with either the greatest node on the left or the smallest node on the right.

- Recursion can be used to make some nice solutions.
I want us to code a BST based mutable map together.
What can go wrong with the type of binary tree that we wrote today to make it perform poorly?