
  

RexEx and Parsing

3-28-2012



  

Opening Discussion

 Any questions about the quiz?
 Minute essay comments:

 Command prompts in games/god mode.



  

Examples of RegEx

 Let's run through some different examples of 
using regular expressions.
 Decimal numbers
 Points in 2-D or 3-D
 Dates
 Polynomials



  

CF Grammars and Internal DSLs

 There are times when you might want to 
include elements in your programs that go 
beyond regular grammars.

 An example of this would be an internal DSL 
(Domain Specific Language). This is like a little 
language that is understood in your program.

 Mathematical formulas count as these, but so 
would simple commands that have some 
structure to them.



  

Example CF Grammar

 Here is a CF grammar for math expressions:
 expr ::= term { “+” term | “-” term }
 term ::= factor { “*” factor | “/” factor }
 factor ::= floatingPointNumber | “(“ expr “)”

 Use {} for 0 or more and [] for 0 or 1.
 Lots of languages here:

 http://www.antlr.org/grammar/list

http://www.antlr.org/grammar/list


  

Scala Parsers

 import scala.util.parsing.combinator._

 class Arith extends JavaTokenParsers {

 def expr:Parser[Any] = term~rep(“+”~term | “-”~term)
 def term:Parser[Any] = factor~rep(“*”~factor | “/”~factor)
 def factor:Parser[Any] = floatingPointNumber | “(“~expr~”)”

 }



  

Conversion Rules

 Put in a class that extends one of the Parsers.
 Productions become methods.
 Results are Parsers. Next class we'll see how to 

make it more specific than Any.
 Consecutive symbols are adjoined with ~.
 The {...} is replaced with rep(...).
 The […] is replaced with opt(...).



  

Using the Parser

 Call parseAll or parse on your class.
 Takes two arguments:

 First argument is the parser to use.
 Second argument is the string to parse.

 Let's code this all up and see it in action.



  

Default Parser Output

 Strings match themselves.
 RegEx and tokens give strings.
 P~Q gives back ~(p,q), where p and q are the 

matches of P and Q.
 P | Q gives either p or q.
 rep(P) or repsep(P,seperator) give a list of p 

values.
 opt(P) gives an Option, either Some(p) or 

None.



  

Specifying Output

 You can override the default of P by using P ^^ 
f. The f is a function (or partial function) that 
takes the normal output of P.

 The output you get is f(p).
 Example uses:

 floatingPointNumber ^^ (_.toDouble)
 “true” ^^ (x=>true)
 “(“~ident~”,”~ident~”)” ^^ { case 

“(“~i1~”,”~i2~”)” => (i1,i2) }



  

Ignoring Parts of the Parse

 In something like the last example shown, there 
are strings that are part of the parse that really 
don't impact the result.

 When you have this type of situation you can 
use ~> or <~ instead of just ~.  The parse result 
will only include what the arrow points to.
 “(“~>ident~”,”~ident<~”)” ^^ { case i1~”,”~i2 

=> (i1,i2) }



  

Our Code

 Let's work on putting this type of functionality in 
our formula code.

 We want to parse to a tree similar to what we 
produced with the recursive parser we wrote 
ourselves.

 With that we can make this alternate code 
functional.



  

Minute Essay

 Questions? Can you think of anyplace you 
might use this in your project?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

