

RexEx and Parsing

3-28-2012

Opening Discussion

 Any questions about the quiz?
 Minute essay comments:

 Command prompts in games/god mode.

Examples of RegEx

 Let's run through some different examples of
using regular expressions.
 Decimal numbers
 Points in 2-D or 3-D
 Dates
 Polynomials

CF Grammars and Internal DSLs

 There are times when you might want to
include elements in your programs that go
beyond regular grammars.

 An example of this would be an internal DSL
(Domain Specific Language). This is like a little
language that is understood in your program.

 Mathematical formulas count as these, but so
would simple commands that have some
structure to them.

Example CF Grammar

 Here is a CF grammar for math expressions:
 expr ::= term { “+” term | “-” term }
 term ::= factor { “*” factor | “/” factor }
 factor ::= floatingPointNumber | “(“ expr “)”

 Use {} for 0 or more and [] for 0 or 1.
 Lots of languages here:

 http://www.antlr.org/grammar/list

http://www.antlr.org/grammar/list

Scala Parsers

 import scala.util.parsing.combinator._

 class Arith extends JavaTokenParsers {

 def expr:Parser[Any] = term~rep(“+”~term | “-”~term)
 def term:Parser[Any] = factor~rep(“*”~factor | “/”~factor)
 def factor:Parser[Any] = floatingPointNumber | “(“~expr~”)”

 }

Conversion Rules

 Put in a class that extends one of the Parsers.
 Productions become methods.
 Results are Parsers. Next class we'll see how to

make it more specific than Any.
 Consecutive symbols are adjoined with ~.
 The {...} is replaced with rep(...).
 The […] is replaced with opt(...).

Using the Parser

 Call parseAll or parse on your class.
 Takes two arguments:

 First argument is the parser to use.
 Second argument is the string to parse.

 Let's code this all up and see it in action.

Default Parser Output

 Strings match themselves.
 RegEx and tokens give strings.
 P~Q gives back ~(p,q), where p and q are the

matches of P and Q.
 P | Q gives either p or q.
 rep(P) or repsep(P,seperator) give a list of p

values.
 opt(P) gives an Option, either Some(p) or

None.

Specifying Output

 You can override the default of P by using P ^^
f. The f is a function (or partial function) that
takes the normal output of P.

 The output you get is f(p).
 Example uses:

 floatingPointNumber ^^ (_.toDouble)
 “true” ^^ (x=>true)
 “(“~ident~”,”~ident~”)” ^^ { case

“(“~i1~”,”~i2~”)” => (i1,i2) }

Ignoring Parts of the Parse

 In something like the last example shown, there
are strings that are part of the parse that really
don't impact the result.

 When you have this type of situation you can
use ~> or <~ instead of just ~. The parse result
will only include what the arrow points to.
 “(“~>ident~”,”~ident<~”)” ^^ { case i1~”,”~i2

=> (i1,i2) }

Our Code

 Let's work on putting this type of functionality in
our formula code.

 We want to parse to a tree similar to what we
produced with the recursive parser we wrote
ourselves.

 With that we can make this alternate code
functional.

Minute Essay

 Questions? Can you think of anyplace you
might use this in your project?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

