RexEx and Parsing

3-28-2012

Opening Discussion

Any questions about the quiz?
Minute essay comments:

Command prompts in games/god mode.

Examples of RegEXx

Let's run through some different examples of
using regular expressions.

Decimal numbers
Points in 2-D or 3-D
Dates

Polynomials

CF Grammars and Internal DSLs

There are times when you might want to
include elements in your programs that go
beyond regular grammars.

An example of this would be an internal DSL
(Domain Specific Language). This is like a little
language that is understood in your program.

Mathematical formulas count as these, but so
would simple commands that have some
structure to them.

Example CF Grammar

Here is a CF grammar for math expressions:

({3

expr ::=term { “+" term | *-" term }
term ::= factor { **” factor | “/” factor }
factor ::= floatingPointNumber | “(* expr “)”

Use {} for O or more and [] for O or 1.

_ots of languages here:

http://www.antlr.org/grammar/list

http://www.antlr.org/grammar/list

Scala Parsers

import scala.util.parsing.combinator.
class Arith extends JavaTokenParsers {

def expr:Parser[Any] = term~rep(“+"~term | “-"~term)
def term:Parser[Any] = factor~rep(“*"~factor | “/"~factor)
def factor:Parser[Any] = floatingPointNumber | “(“~expr~")”

Conversion Rules

Put in a class that extends one of the Parsers.

Productions become methods.

Results are Parsers. Next class we'll see how to
make it more specific than Any.

Consecutive symbols are adjoined with ~.
The {...} is replaced with rep(...).
The [...] is replaced with opf(...).

Using the Parser

Call parseAll or parse on your class.
Takes two arguments:

First argument is the parser to use.
Second argument is the string to parse.

Let's code this all up and see it in action.

Default Parser Output

Strings match themselves.
RegEXx and tokens give strings.

P~Q gives back ~(p,q), where p and q are the
matches of P and Q.

P | Q gives either p or q.

rep(P) or repsep(P,seperator) give a list of p
values.

opt(P) gives an Option, either Some(p) or
None.

Specifying Output

You can override the default of P by using P M
f. The fis a function (or partial function) that
takes the normal output of P.

The output you get is f(p).

Example uses:
floatingPointNumber A (_.toDouble)
“true” M (x=>true)

“("~ident~","~ident~")" " { case
“(“~i1~”,”~i2~”)” => (i1 ,i2) }

Ignoring Parts of the Parse

In something like the last example shown, there
are strings that are part of the parse that really

don't impact the resuilt.

When you have this type of situation you can
use ~> or <~ Instead of just ~. The parse result

will only include what the arrow points to.

££(££~>ident~”,!!~ident<~”)” FAVAY { Case i1~”,”~i2
=> (i1 ,i2) }

Let's work on putting this type of functionality in
our formula code.

We want to parse to a tree similar to what we
produced with the recursive parser we wrote
ourselves.

With that we can make this alternate code
functional.

Minute Essay

Questions? Can you think of anyplace you
might use this in your project?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

