

Parser Output

4-2-2012

Opening Discussion

 Minute essay comments:
 Adding extra features to projects as misallocation of

time.

 Traversing the default parse.

Specifying Output

 You can override the default of P by using P ^^
f. The f is a function (or partial function) that
takes the normal output of P.

 The output you get is f(p).
 Example uses:

 floatingPointNumber ^^ (_.toDouble)
 “true” ^^ (x=>true)
 “(“~ident~”,”~ident~”)” ^^ { case “(“~i1~”,”~i2~”)” =>

(i1,i2) }

Ignoring Parts of the Parse

 In something like the last example shown, there
are strings that are part of the parse that really
don't impact the result.

 When you have this type of situation you can
use ~> or <~ instead of just ~. The parse result
will only include what the arrow points to.
 “(“~>ident~”,”~ident<~”)” ^^ { case i1~”,”~i2 =>

(i1,i2) }

Our Code

 Let's work on putting this type of functionality in
our formula code.

 We want to parse to a tree similar to what we
produced with the recursive parser we wrote
ourselves.

 With that we can make this alternate code
functional.

Minute Essay

 Questions? Can you think of anyplace you
might use this in your project?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

