

Inheritance and Subtyping

1-20-2012

Opening Discussion

 Do you have any thoughts about what project
you want to do?

 Minute essay comments:
 IcPs and Assignments will focus on the projects

with minor extensions.
 Is making an RTS really feasible?
 Will you code on the 2-D drawing outside of class?
 Is it normal to feel overwhelmed and scared and

want to change to a COMM major?
 Project analysis and design is mostly you, but you

can talk to me.

More

 How complex can use-case diagrams get?
 Is it easier to do fun projects or useful projects?
 Pseudo-networking through shared files.

Abstraction

 I lot of this semester focuses on the idea of
abstraction.

 We saw a little abstraction in the first semester,
like having the ability to pass in different
functions to perform different operations.

 This capability can be expanded greatly and
gives us a lot of power.

 Remember that we don't want to write more
code than we have to. In particular, duplicating
code is very risky.

Polymorphism

 Literally means “many shapes”. In programming
means “many types”.

 Our code to date has been monomorphic. It
worked with only one type.

 We can add a lot of flexibility with
polymorphism.
 Write something once and have it work with many

types.

 Universal polymorphism → works with infinite
number of types

Inclusion Polymorphism

 One from of Universal Polymorphism is called
Inclusion Polymorphism.

 We get this when we have that ability to say
that one type is a subtype of another type.

 If B is a subtype of A, then any code that wants
an instance of A can use an instance of B.

 Consider the type Fruit.

Inheritance

 The way we get inclusion polymorphism in
Scala is through inheritance.
 class B(...) extends A(...) { … }

 This means B gets all the stuff from A.
 For that reason, it can be safely used as a subtype.
 Subtypes can override implementations.

 Only use inheritance to represent an “is a”
relationship. Even then don't use it unless it
makes sense.

 Let's consider the example of a shape.

Details

 Visibility
 Private – subtypes can't get access, but have a

copy of data.
 Protected – subtypes can access, but other things

can't.

 Call methods on supertypes with
super.method(...)

 You can only inherit from one class.
 In UML this is shown as an open headed arrow

from the subtype to the supertype.

Anonymous Classes

 It turns out you have been using inheritance for
a long time.
 val frame = new MainFrame { … }

 This code actually makes a new class with no
name. It is a subtype of MainFrame.

 Because it doesn't have a name of its own it is
called an anonymous class.

Abstract Classes

 Often a supertype needs to have a method, but
there is no general implementation.

 In this case, the method should be abstract.
That simply means it isn't implemented.

 Classes with abstract members need to be
declared abstract.
 abstract class Shape {

 def area:Double
 }

 Abstract classes can't be instantiated.

Traits

 A trait in like an abstract class that can't take
arguments.

 You can inherit from multiple traits.
 class B extends A with T1 with T2 … { … }

 If methods are duplicated, it searches for the
one to use starting at the end of the list and
working backward (plus some other details).

final

 Sometimes you have methods that shouldn't be
overridden or classes that shouldn't be
inherited from. In that case you make them
final.

 For example, immutable classes need to be
final so that people can't make mutable
subtypes.

Inheriting from Function Types

 As you know, functions are used in many
places in Scala.

 If you provide an apply method, you can have
your class inherit from a function type.

 This would let you pass instances of your
function into methods that want functions.

Coding

 Let's write some code for the drawing program.

Minute Essay

 Questions?
 How might inheritance and subtyping be used

in your project?
 Next class we will use this in our project.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

