

Inheritance and Subtyping

1-20-2012

Opening Discussion

 Do you have any thoughts about what project
you want to do?

 Minute essay comments:
 IcPs and Assignments will focus on the projects

with minor extensions.
 Is making an RTS really feasible?
 Will you code on the 2-D drawing outside of class?
 Is it normal to feel overwhelmed and scared and

want to change to a COMM major?
 Project analysis and design is mostly you, but you

can talk to me.

More

 How complex can use-case diagrams get?
 Is it easier to do fun projects or useful projects?
 Pseudo-networking through shared files.


Abstraction

 I lot of this semester focuses on the idea of
abstraction.

 We saw a little abstraction in the first semester,
like having the ability to pass in different
functions to perform different operations.

 This capability can be expanded greatly and
gives us a lot of power.

 Remember that we don't want to write more
code than we have to. In particular, duplicating
code is very risky.

Polymorphism

 Literally means “many shapes”. In programming
means “many types”.

 Our code to date has been monomorphic. It
worked with only one type.

 We can add a lot of flexibility with
polymorphism.
 Write something once and have it work with many

types.

 Universal polymorphism → works with infinite
number of types

Inclusion Polymorphism

 One from of Universal Polymorphism is called
Inclusion Polymorphism.

 We get this when we have that ability to say
that one type is a subtype of another type.

 If B is a subtype of A, then any code that wants
an instance of A can use an instance of B.

 Consider the type Fruit.

Inheritance

 The way we get inclusion polymorphism in
Scala is through inheritance.
 class B(...) extends A(...) { … }

 This means B gets all the stuff from A.
 For that reason, it can be safely used as a subtype.
 Subtypes can override implementations.

 Only use inheritance to represent an “is a”
relationship. Even then don't use it unless it
makes sense.

 Let's consider the example of a shape.

Details

 Visibility
 Private – subtypes can't get access, but have a

copy of data.
 Protected – subtypes can access, but other things

can't.

 Call methods on supertypes with
super.method(...)

 You can only inherit from one class.
 In UML this is shown as an open headed arrow

from the subtype to the supertype.

Anonymous Classes

 It turns out you have been using inheritance for
a long time.
 val frame = new MainFrame { … }

 This code actually makes a new class with no
name. It is a subtype of MainFrame.

 Because it doesn't have a name of its own it is
called an anonymous class.

Abstract Classes

 Often a supertype needs to have a method, but
there is no general implementation.

 In this case, the method should be abstract.
That simply means it isn't implemented.

 Classes with abstract members need to be
declared abstract.
 abstract class Shape {

 def area:Double
 }

 Abstract classes can't be instantiated.

Traits

 A trait in like an abstract class that can't take
arguments.

 You can inherit from multiple traits.
 class B extends A with T1 with T2 … { … }

 If methods are duplicated, it searches for the
one to use starting at the end of the list and
working backward (plus some other details).

final

 Sometimes you have methods that shouldn't be
overridden or classes that shouldn't be
inherited from. In that case you make them
final.

 For example, immutable classes need to be
final so that people can't make mutable
subtypes.

Inheriting from Function Types

 As you know, functions are used in many
places in Scala.

 If you provide an apply method, you can have
your class inherit from a function type.

 This would let you pass instances of your
function into methods that want functions.

Coding

 Let's write some code for the drawing program.

Minute Essay

 Questions?
 How might inheritance and subtyping be used

in your project?
 Next class we will use this in our project.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

