
1

Introduction to UML

1/28/2008

2

Why UML?

■ What is the purpose of UML? Why was it
created? Why should you know it?

■ What do you know currently about UML? In
what situations have you used it?

3

What is UML

■ UML stands for Unified Modeling Language.
The name itself tells us something about it
and its history.

■ It is a modeling language. This implies that it
is a formal method of modeling programs. In
practice, it can go beyond just the original
modeling use though.

■ Why is it unified? Prior to UML people had
developed a large number of different
modeling languages that did nearly the same
thing in different ways.

4

Beyond Modeling
■ While UML was originally created to allow us

to use formal drawing to model programs and
aid with their analysis and design, it has
other uses as well.

■ UML is also a communication tool. We can
all understand code by reading it, but reading
the code for a large project is very difficult.
UML gets key information across easier.

■ UML can work as an architecture tool that
allows us to see problems at high levels.

■ UML 2.x was designed to allow code
generation.

5

Easy to Draw

■ One of the big keys to UML is that all the
elements of it are easy to draw. You don't
have to be a great artist to create UML
diagrams

■ You could also say the UML is “whiteboard
compatible”. This implies that it is easy for
people to sketch UML to varying degrees of
detail when communicating ideas to other
people or trying to develop ideas.

6

Multiple Diagrams

■ Anyone who has taken PAD2 has seen UML
class diagrams. However, UML is much
more than just class diagrams.

■ Version 2.0 of UML includes 13 different
types of diagrams
 Use Case, Activity, Class, Object, Sequence,

Communication, Timing, Interaction, Composite,
Component, Package, State Machine, and
Deployment

7

Things You Already Know

■ Each of you should already know about
Class Diagrams and what they show us.
These are the staple of design work and
allow us to visualize class hierarchies and
see dependencies in our code.

■ You should also all know about Use Case
Diagrams and the fact that they are used in
the analysis process to help define and
communicate exactly what problem we are
trying to solve.

8

Things You Need To Learn

■ Obviously you could learn all the different
UML diagrams and that wouldn't be a bad
thing. In practice you need to know the ones
you need, but having an idea about all of
them helps you determine which ones you
need.

■ More importantly, you need to practice with
whatever ones you use so that you can get a
feeling for them. All the diagrams can look
pointless or confusing if you don't understand
them and use them well.

9

Tools

■ There are lots of tools for doing UML
diagrams. Different tools provide different
support. Unfortunately, this is one area
where good tools rarely come cheap.
 ArgoUML is free and open source, but doesn't

yet support UML 2.x. NetBeans now has UML.
 Together and Rational Rose are industry

standards with hefty price tags.
 Poseidon is widely used, no longer completely

free.
 Visual Paradigm has a free Community Edition

as does EclipseUML from Omondo.

10

Class Diagrams

■ Let's review the basics of class diagrams and
what they can tell us.

11

Use Case Diagrams

■ In a real software development situation, the
diagram that you start with should not be a
class diagram, but a use case diagram.
These are used in the analysis phase of
developing a project. They help you
determine what exactly your product does.

■ The diagram consists of actors outside the
system, the system, use cases, and
connections showing relationships.

■ These diagrams must be accompanied by
use case descriptions.

