AVL Trees

10-7-2003

Opening Discussion

What did we talk about last class?
Do you have any questions about the
assignment?

How would you deal with putting

elements in the tree that have the same
value?

Balanced Trees

We have already discussed how a sorted
binary tree can degenerate into a linked
list with the wrong data. While this isn't
very likely, it is still something we would
like to prevent.

If nothing else, keeping trees perfectly
balanced also gives us a 38% speed boost
over average performance. As such, we
will look at balanced trees the next two-
three class days.




AVL Trees

The first approach we take to take to help
with the balance of trees is the AVL tree
(Adelson-Velskii and Landis).

For this tree we make sure that at each
add the difference between the heights of
the left and right branches of any node
differ by no more than 1. We preserve
this property by applying so called
rotations at adds.

Approach

The basic idea is that when we add something
to the tree, the only nodes that could become
“unbalanced” are those that we pass through on
the traversal to where the node goes. In each
node we store a height so we can quickly
determine if something needs to be changed.
The changes are made by moving a node from
the high side to the low side, but it has to be
done in a way to preserve the sorting. This is
what the “rotations” do.

Four Cases for Insert

When we find a node that is unbalanced
we can easily describe four different ways
in which it happened, all are based on
where the new node went in relation to
the children of the unbalanced node, X.

1 - left of left child

2 - right of left child

3 - left of right child

4 - right of right child




Single Rotation

For cases 1 & 4 (outside o@
branch too long) we can

perform a single rotation.

We will look at case 1.

We “rotate” the left child up

in place of X and make X its ©
right child. We then make ®
what had been the right

child of the node we are

moving the left child of X.

Double Rotation

For cases 2 & 3
we need to do
something
slightly more
complex.

We bring the
node from two
levels down up to
the top.

Removes?

It is easy to see how we deal with removes from
an AVL work. A remove can produce any of the
same “situations” that were present in the add,
but “in reverse”. We start looking for it at the
“replacement node”.

We perform the same rotations for the same
situation. The main thing that makes this more
complex is that it doesn't fit as easily into the
recursion because things can move at two
places in a delete.




Minute Essay

Show me the trees that result from adding
the numbers 1-5 to an AVL tree that is
originally empty. Draw the whole tree for
each of the additions.

The test in this class is a week from
Thursday.

Read the textbook section on black and
red tree for next class.




