Red-Black Trees

10-9-2003

Opening Discussion

Do you have any questions about the
quiz?

What did we talk about last class?

Do you have any questions about the
assignment?

Should the test be open book/notes?

Rules of Red-Black Trees

Every element is either red or black.
The root is black.

Every NULL child is considered black.
If a node is red then both its children
must be black.

All paths from a node to a leaf under it
must have the same number of black
nodes.




Rotations

We will be using the same single rotations
with red-black trees that we used with
AVL trees. Only the situations doesn’t
have to be the same.

Can someone describe a single rotation to
me?

Insertion

As with an AVL tree we begin by inserting
the new node in the way of a normal

sorted binary tree. After that we have to
clean up the tree in some way if we have
violated the properties of a red-black tree.

To fix the tree we do something similar to
what was done in the AVL tree, but using
colors instead of heights. We walk up the
tree and fix the violations that we find.

Insertion Fixing

At the beginning of every loop our
“current” node is red and if the parent is
the root it is black. There is also never
more than one violation of the red-black
properties. Generally it is a red node
having a red child.

The advantage of the red-black tree is
that we never do more than 2 rotations to
fix the tree.




The Loop

While the parent is red we do a loop.

If we are to the left of our grandparent.
If our uncle is red we make our parent and our
uncle black and our grandparent red, then make
our grandparent the current.
Otherwise if we are to the right of our parent
move to the parent and rotate the current
left. Either way we make our parent black
and our grandparent red then rotate right.

Mirror this logic if we are on the right.
Finish by setting the root black.

Deletion

The delete your book uses is a bit
different from what we did. The main
difference is that they don't actually move
the node we are deleting. Instead, they
change the value stored in it. This has
less impact on the red-black structure,
though we can make ours look like that
by remembering to set the color in the
replacement node to what it is replacing.

Deletion Fixing

After the delete we again have to fix
things. This function is distinctly different
from the fixing that is used in insertion.
In this regard, the code can be more
complex than the AVL tree.

We'll go into the details of this next class.




Code

We can spend some time validating the
binary tree code that we have now and
then start making a red-black tree from it
once we know that it works.

Minute Essay

Do you think that balanced binary trees
are worth the trouble?




