More Red-Black Trees

10-14-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

Do you have any questions about the
midterm?

The value of balanced binary trees.

Revisiting Insertion

voi d I nsertFi xup(Node z) {
whi | e(z. parent. col or==RED) {
if(z.parent==z.parent.parent.left) {
y=z.parent.parent.right;
if(y.color==RED) {
z. parent . col or =BLACK;
y. col or =BLACK;
z. parent. parent. col or =RED;
z=z.parent.parent;
} else {
if(z==z.parent.right) {
z=z.parent;
RotateLeft(z);
}
z. parent . col or =BLACK;
z. parent. parent. col or =RED;
Rot at eRi ght (z. parent. parent);

} else { sane as above with left and right switched }

root . col or =BLACK;

Deletion

The delete your book uses is a bit
different from what we did. The main
difference is that they don't actually move
the node we are deleting. Instead, they
change the value stored in it. This has
less impact on the red-black structure,
though we can make ours look like that
by remembering to set the color in the
replacement node to what it is replacing.

Deletion Code

voi d Del ete(Node z) {
if(z.left==0 || z.right==0) y=z;
el se y=Successor(z);
if(y.left!=0) x=y.left;
el se x=y.right;
X. parent =y. parent ;
if(y.parent==0) {
root =x;
} else {
if(y==y.parent.left) y.parent.|eft=x;
el se y.parent.right=x;

}
if(yt=z) {

z. data=y. dat a;
}

if(y.color==BLACK) {
Del et eFi xup(x);
}

Deletion Fixing

After the delete we again have to fix
things, but only if the sliced out node was
black. This function is distinctly different
from the fixing that is used in insertion.
In this regard, the code can be more
complex than the AVL tree.

Deletion Fixing Loop

whi l e(x!=root && x.col or ==BLACK) {
if(x==x.parent.left) {
w=x. parent.right;
if(w. color==RED) {
w. col or =BLACK; x. parent. col or =RED;
RotatelLeft(x.parent); w=x.parent.right;

}

if(wleft.color==BLACK & w.ri ght. col or ==BLACK) {
w. col or=red; x=x.parent;

} else {

if(wright.col or ==BLACK) {
w. | eft. col or =BLACK; w. col or =RED;
Rot at eRi ght (w); w=x. parent.right;

}

w. col or =x. parent . col or; x.parent. col or =BLACK;

w. right.col or=BLACK; RotateLeft(x.parent);

X=r 00t ;

} else { sane as above but exchange right and left }

x. col or =bl ack;

Code

Let's continue to work on our binary tree
code so that we feel confident that we
have a working, non self-balancing binary
tree.

Minute Essay

Do you think you will have assignment #2
completed by tonight? If not, what parts
of it are hanging you up?

We have the midterm next class. We'll
have a review session for it tomorrow at
4:00 in 228. I stay until 6pm or whenever
the questions run out. It's intermingled
with ACM programming team practice
after 4:30. Those who can’t make that
can meet right now for a bit.

