B-trees

10-30-2003

Opening Discussion

Do you have any questions about the
quiz?
What did we talk about last class?

Do you have any questions about the
assignment?

Group meetings and final format.

Some Details on Disks

As you are well aware, your computer has
both internal memory and disks. Typically
the disks are much bigger (storage wise),

but they are also MUCH slower.

The disk can have multiple platters that
spin with read/write heads that hover
over (and under) the platters.

One ring on a platter is a track, a stack of
tracks in a cylinder. Cylinders are borken
into pages.




B-Trees

The biggest difference between a B-tree
and the binary search trees we have
looked at is the branching factor. A B-
tree will typically have hundreds or
thousands of children under a given node.
The reason for this is that a node should
fill a “page” on disk. This optimizes the
disk operations. B-tree applications
typically don't fit in memory.

Requirements of a B-Tree

Each node has: a number of keys, the set of
keys stored in non-decreasing order and a
boolean saying if it is a leaf.

All internal leaves also have children, one more
than the key count. The fall “between” the keys
in that node and the keys in the children are
“between” the parent keys.

All leaves have the same depth.

There is a minimum degree, t. All nodes
(except the root) must have at least t-1 keys
and at most 2t-1 keys.

Searching a B-Tree

The procedure of searching a B-tree is
quite simple. It is like a binary tree,
except that at each node we have to walk
though multiple keys to find either the
one we want, or the two that bound what
we want.

If we find two that bound what we want
we have to load in the data for that child
from disk and recurse to that child.




Inserting into a B-Tree

As with inserting into a binary tree, an
insertion to a B-tree can be done with a
single pass down through the tree that
works much like a search. The difference
is that now we aren't adding a new node
at the bottom. Instead, we add the key in
a leaf.

The problem is when a leaf is full we can't
add more. So we split.

Splitting

The actual procedure we use is that as we
go down, any time we see a full child, we
splitit. This way we do things in one
pass.

To split a node, we add the median key in
it to its parent and turn it into two
children of that parent, each with half as
many nodes.

When the root is full we split it by creating
a new root.

Minute Essay

Combine what you know about direct
access files with what we just talked
about for a B-tree. Give a brief
explanation of how you would implement
the internal code of a B-tree. How is it
different from what you have been doing
with our other trees?

Remember to do a group evaluation for
assignment #3.




