Graphs

11-6-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

What is a linked list? What are limitations
on it? What is a tree? What are the
limitations on them? Can you describe a
linked structure (or draw a picture) which
is neither a tree, nor a list?

AVL vs. Red-Black, Quad vs. KD

B-Trees and Disk

The book covers this a bit, but we should discuss
it as well. In a B-tree the way we reference
children is with file locations.

So a node has one vector of keys (and maybe
data), and one vector of “links” which are
locations in the file. The links vector is always one
longer than the keys vector.

Whenever we are working with a node, we jump
to the location in file and read it. If we make
changes, we jump to the same location and write.
Never keep many nodes in memory.




What is a Graph?

A graph, G(V, E), is made from two sets.

The first set, V, is a set of vertices (I
might call them nodes occasionally).

The second set, E, is a set of edges which
are ordered pairs (u,v) such that u and v
are elements of V.

Basically, anything you can draw on a
board with dots/boxes and lines is a
graph.

Variations on a Theme

There are many terms used to describe different
“types” of graphs.
Sparse vs. dense - if there are close to V2 edges a
graph is dense.
Di-graph - short for directed graph. In a non-
directed graph if E contains (u,v) it also contains
(v,u).
Cyclic vs. Acyclic - is there a path from u back to u
without repeating an edge?
Connected vs. disjoint
DAG = Directed Acyclic Graph
Weighted graphs - edges have a value associated
with them.

Adjacency Lists

One way to store a graph is with a set of lists.
We have one list for each vertex and that list
contains all the vertices it has edges to.

This is good for sparse graphs because we only
use memory proportional to the number of
edges.

The downfall is that you can't quickly ask if a
certain pair of vertices is joined by an edge.
Storing edges in nodes is basically equivalent to
this.




Adjacency Matrix

An alternate method of storing a graph is
with an adjacency matrix. Here, every
vertex is given a number. If there is an
edge (u,v) then the element at row u,
column v has a 1 in it, otherwise it is 0.
For a weighted graph the value is the weight,
not just 1.
This gives fast lookup of edges, but
requires O(V2) storage even for sparse
graphs.

Breadth-First Searching

This is a traversal of a graph where we discover
things at the same level in order. To prevent
infinite loops in cyclic graphs we color nodes.
The book uses three colors to help with some
proofs and algorithms, only two are really
needed.

The breadth-first search uses a queue to store
nodes that have been discovered. All nodes
start white, are made gray on discovery and
black when all children have been enqueued.

Can store depth and parent information.

Depth-First Searching

This style of search uses recursion (a
stack). To help with some extra
algorithms, the book has this store
discovery time and finish time for each
node. Again a three color scheme is used
to prevent infinite loops and with proving
of certain aspects of the algorithms.




Topology Sorting

For a DAG, a depth first search can easily
produce an ordering for all the vertices
such that if there is an edge (u,v) then u
comes before v in the ordering.

This ordering can be made by sorting the
elements in reverse order by their
finishing time. This is done quickly by
simply inserting the nodes at the
beginning of a linked list when finished.

Strongly Connected
Components

A strongly component of a graph is a maximal
subset, C, of V such that for every pair of
nodes, u and v, in C there is a path from u to v
and a path from v to u.

To find these we do a DFS of G, then computer
GT where all the edges have been reversed.
Now we do a DFS of GT, but visit nodes in order
of descending finishing time. The trees in the
forest of that traversal are the strongly
connected components.

Minute Essay

What did we talk about today? You
should turn in your test code for
assignment #4 today (or soon) and
remember that the whole thing is due on
Tuesday.

I'll be out of town and likely without much

e-mail for the weekend due to the ACM
programming competition.




