Minimum Spanning Trees

11-11-2003

Opening Discussion

- What is a graph? I’d like informal and formal descriptions of the structure. What are the two ways we talked about for representing the graphs in a program?
- Do you have any questions about the assignment?

Code for Searches

- Now let’s go look at some code for doing these searches. Doing them efficiently is slightly different depending on whether you have an adjacency list or an adjacency matrix representation.
Topology Sorting

- For a DAG, a depth first search can easily produce an ordering for all the vertices such that if there is an edge \((u,v)\) then \(u\) comes before \(v\) in the ordering.
- This ordering can be made by sorting the elements in reverse order by their finishing time. This is done quickly by simply inserting the nodes at the beginning of a linked list when finished.

Strongly Connected Components

- A strongly component of a graph is a maximal subset, \(C\), of \(V\) such that for every pair of nodes, \(u\) and \(v\), in \(C\) there is a path from \(u\) to \(v\) and a path from \(v\) to \(u\).
- To find these we do a DFS of \(G\), then compute \(G'\) where all the edges have been reversed. Now we do a DFS of \(G'\), but visit nodes in order of descending finishing time. The trees in the forest of that traversal are the strongly connected components.

Minimum Spanning Tree

- A spanning tree is a set of edges that connects all the vertices of a graph. If the graph has \(V\) vertices then the spanning tree has \(|V|-1\) edges.
- It is called a tree because there are no cycles in it.
- If the graph is weighted then we can find a spanning tree that minimizes the weights of the edges in it.
Procedure and Definitions

- The procedure for building the minimum spanning tree is to start with an empty set and repeatedly add "safe" edges into it. A "safe" edge is one that is an element of some minimum spanning tree.
- To help with this we define a cut as a partitioning of the graph into two sets, \(C=(S,V-S) \). An edge that connects a vertex in \(S \) to one in \(V-S \) crosses the cut.
- A cut respects a set of edges \(A \) if no edge in \(A \) crosses the cut.

A Helpful Theorem

- Given a graph \(G=(V,E) \) and a weight function \(\omega \) on \(E \), let \(A \) be a subset of \(E \) that is a subset of some minimum spanning tree for \(G \) and let \((S,V-S) \) be a cut that respects \(A \). If the edge \((u,v)\) is a light edge crossing the cut, then \((u,v)\) is safe for \(A \).
- A light edge is one with a minimum weight that satisfies a requirement.

Kruskal’s Algorithm

- In this algorithm we always add the lowest weight edge in the graph that doesn’t create a cycle. As a result, while the algorithm executes, we go through a process of connecting a forest of trees to produce a single tree.
- To make this fast we first sort the elements of \(E \) by weight and simply walk that in a loop then use fast structures for disjoint sets (Ch. 21).
Prim’s Algorithm

- This algorithm starts with a particular node, and adds edges to a single tree, A, that is built. At each step the edge added is the smallest to connects the tree to a vertex not yet in the tree.
- To make it efficient we keep a min-priority queue of the "keys" of nodes where a key is the minimum edge connecting a node not in the tree to some node in the tree.

Minute Essay

- Which of these two algorithms is more intuitive to you? We haven't tried to do any of these things in a generic way (using templates or other polymorphism). Can you speculate on why? What does this say about graphs as a data structure?
- Remember that assignment #4 should be turned in today.