Minimum Spanning Trees

11-11-2003

Opening Discussion

What is a graph? 1'd like informal and
formal descriptions of the structure. What
are the two ways we talked about for
representing the graphs in a program?

Do you have any questions about the
assignment?

Code for Searches

Now let’s go look at some code for doing
these searches. Doing them efficiently is
slightly different depending on whether
you have an adjacency list or an
adjacency matrix representation.

Topology Sorting

For a DAG, a depth first search can easily
produce an ordering for all the vertices
such that if there is an edge (u,v) then u
comes before v in the ordering.

This ordering can be made by sorting the
elements in reverse order by their
finishing time. This is done quickly by
simply inserting the nodes at the
beginning of a linked list when finished.

Strongly Connected
Components

A strongly component of a graph is a maximal
subset, C, of V such that for every pair of
nodes, u and v, in C there is a path from u to v
and a path from v to u.

To find these we do a DFS of G, then computer
GT where all the edges have been reversed.
Now we do a DFS of GT, but visit nodes in order
of descending finishing time. The trees in the
forest of that traversal are the strongly
connected components.

Minimum Spanning Tree

A spanning tree is a set of edges that
connects all the vertices of a graph. If
the graph has V vertices then the
spanning tree has |V|-1 edges.

It is called a tree because there are no
cycles in it.

If the graph is weighted then we can find
a spanning tree that minimizes the
weights of the edges in it.

Procedure and Definitions

The procedure for building the minimum
spanning tree is to start with an empty set and
repeatedly add “safe” edges into it. A “safe”
edge is one that is an element of some
minimum spanning tree.

To help with this we define a cut as a
partitioning of the graph into two sets, C=(S,V-
S). An edge that connects a vertex in S to on in
V-S crosses the cut.

A cut respects a set of edges A if no edge in A
crosses the cut.

A Helpful Theorem

Given a graph G=(V,E) and a weight
function won E, let A be a subset of E
that is a subset of some minimum
spanning tree for G and let (S,V-S) be a
cut that respects A. If the edge (4,V) is a
light edge crossing the cut, then (¢,v) is
safe for A.

A light edge is one with @ minimum
weight that satisfies a requirement.

Kruskal’s Algorithm

In this algorithm we always add the
lowest weight edge in the graph that
doesn't create a cycle. As a result, while
the algorithm executes, we go through a
process of connecting a forest of trees to
produce a single tree.

To make this fast we first sort the
elements of E by weight and simply walk
that in a loop then use fast structures for
disjoint sets (Ch. 21).

Prim’s Algorithm

This algorithm starts with a particular
node, and adds edges to a single tree, A,
that is built. At each step the edge added
is the smallest to connects the tree to a
vertex not yet in the tree.

To make it efficient we keep a min-priority
queue of the “keys” of nodes where a key
is the minimum edge connecting a node
not in the tree to some node in the tree.

Minute Essay

Which of these two algorithms is more
intuitive to you? We haven't tried to do
any of these things in a generic way
(using templates or other polymorphism).
Can you speculate on why? What does
this say about graphs as a data structure?
Remember that assignment #4 should be
turned in today.

