Single Source Shortest
Paths

11-13-2003

Opening Discussion

What is a spanning tree? What does it
mean to say we have a minimum
spanning tree? What is the rough
algorithm to find such a thing?

Do you have any questions about the
assignment?

Why didn’t I make the graph generic?
Let's look at some sample graph problems
to help illustrate the reason.

Kruskal’s Algorithm

In this algorithm we always add the
lowest weight edge in the graph that
doesn't create a cycle. As a result, while
the algorithm executes, we go through a
process of connecting a forest of trees to
produce a single tree.

To make this fast we first sort the
elements of E by weight and simply walk
that in a loop then use fast structures for
disjoint sets (Ch. 21).

Prim’s Algorithm

This algorithm starts with a particular
node, and adds edges to a single tree, A,
that is built. At each step the edge added
is the smallest to connects the tree to a
vertex not yet in the tree.

To make it efficient we keep a min-priority
queue of the “keys” of nodes where a key
is the minimum edge connecting a node
not in the tree to some node in the tree.

Shortest Paths

You want to get from ¢ to vand you want
to know the shortest way to get there. In
an unweighted graph this is simply the
path constructed with a breadth first tree
that is rooted at w.

For a weighted tree this is slightly more
complex.

WLOG we can say that shortest paths do
not contain cycles.

Shortest Path Trees

If we have a single source, and want to find the
shortest path to all other vertices, we can build
a tree that represents those paths. This tree is
only the shortest path tree at the end, during
the processing it can contain branches that are
not part of the final tree.

We will use relaxation algorithms to do this. We
keep in each node the minimum distance that
has been found so far as we intelligently add
edges to the tree. When we find a shorter path
to a given node, we alter the parent as well.

Bellman-Ford Algorithm

For this algorithm we initialize all the data
(set d[u]=» and p[u]=nil). Then we run
through all edges in the graph |V|-1 times
and relax all of the destination nodes.
When done we can detect negative cycles
which prevent the algorithm from giving
the proper result. This happens if there is
an edge (¢,v) in E and d[v]>d[u]+m(y, V).
This takes O(V*E) time.

Minute Essay

Now do you understand why graphs and
their algorithms are hard to write to write
in a generic way? If you didn't have the
book, how would you try to go about
finding minimum spanning trees or
shortest paths? How would you improve
on the shortest path algorithm discussed
here?

Quiz #5 will be next class.

