All-Pairs Shortest Path

11-17-2003

Opening Discussion

Do you have any questions about the
quiz?

Have you thought more about the single-
source shortest path problem and how
you might improve on the Bellman-Ford
algorithm? How did that algorithm work?

Do you have any questions about the
assignment?

More Single-Source
Shortest Path

In the case of a DAG we can create our
shortest path tree even more efficiently,
O(V+E). We do this by first doing the
topological sort that was discussed last
time, then visiting nodes and relaxing
them in the order of the topological sort.
This way we never visit a given node until
we have visited all of it's predecessors in
the DAG.




Dijkstra’s Algorithm

Only works when edge weights are non-negative.

This algorithm picks the next node to do the
relaxation on in a more intelligent way. It keeps
a min-priority queue of all the vertices that aren’t
finalized yet. The smallest one can be finalized
and all the nodes it has edges to are relaxed.
This is repeated until every node is finalized.

Is easily done in O(V2+E) time. With a normal
heap we get O((V+E) log V) time. With a
Fibonacci heap we get O(V log V + E) time.

All-Pairs Shortest Path

What if you want to calculate the shortest
path from any source to any destination?
We could just run the single-source
algorithms V times to get that
information, but that would have an order
of V times whatever the order of the
algorithm that we used.

As you might guess though, there are
more efficient algorithms for solving this.

Data Representation

In general we will use a matrix
representation here, where the matrix
element w;=0 if i=j, the weight if an edge
connects i to j, and « if there isn’t an
edge from i to j.

We also keep a matrix D where each
element d; is the minimum distance path
fromito j. Lastly we keep a predecessor
matrix M where T is the predecessor of j
on the shortest path from i or nil.




Using “Matrix
Multiplication”

Define I;‘™ as the minimum path from i to
j with at most m edges. By definition, I;®
is 0 if i=j and « if i#). We can recursively
define it for higher m values as follows.
"= minbu(m_l) ]Ql'g{l DA }) = E‘k'g{l 0+ ij}
When m=V-1 we know we have the true
shortest paths.

If we start with a matrix W we can evolve
L™ to get our solution.

Improving Performance

A basic application of this would produce
O(V*) performance. However, the
algorithm that extends the shortest path
is associative, just like matrix
multiplication, so we can compute the
answer through repeated squaring.

Also, because LM=L(M1 for all m=n-1, we
can overshoot in the squaring and it
doesn't cause a problem.

This gives O(V?3 log V) performance.

Minute Essay

How are the problems we are talking
about different from the TSP? These
algorithms are all polynomial, yet you are
told the TSP isn't. Why is that?




