Dynamic Programming

12-2-2003

Opening Discussion

What do you remember about our
discussion of dynamic programming from
last class? What are the steps in coming
up with a DP solution to a problem?

Do you have any questions about the
assignment?

Scheme and the largest factorial in Java.

Optimal Substructure

In order for a problem to be approachable
with dynamic programming, it must have
optimal substructure. So the optimal
solution to the full problem must be built
from optimal solutions to smaller
problems.

In graphs a shortest path has this, a
longest path does not.




Assembly Line Problem

As simple example of this is the assembly line
problem from the book. You have two assembly
lines next to one another they do things at
different speeds. Normally cars go straight
through them, but rush jobs want the fastest
path. That might include some transfers, but
transfers cost some time.

At each station the optimal path either comes
from the previous station on that line, or the
previous one on the other line.

Assembly Line
Recursion/Solution

Solving this requires only the recursive
function and two arrays, one for each
assembly line.
f[j]= € +a, i=1
W ay, +min(f -1, £ -1+t, ) 22
f.0j]= € +a,, j=1
2 a,, +min(f,[j -1, f,[j -1+t ) j=2

0/1 Knapsack Problem

Last time we began discussion this problem.
We need to consider if our approach gives us
optimal substructure.

To do that the recursive arguments must be the
number of the object being considered and the
weight we are currently carrying. This makes
things harder for non-integer weights.

0 i<10w<0

v(i,w) = v(i—1Lw) w<w,
max(v(i —1,w),v(i —Lw-w)+v,) otherwise




Solving 0/1 Knapsack

To solve this problem we need a 2D array
with one dimension that goes up to the
number of items and a second dimension
that goes up to the maximum weight that
we can hold.

We simply fill this in starting from the
bottom left corner and the value that
comes out in the top right corner is the
final answer.

Reconstructing the
Solution

The methods we have talked about only
tell us a final value, not how to get it. To
find that, we simply track back from the
answer we got and reconstruct how we
got there.

Let's see how this works in our examples.

Memoization

Because we have trained our brains to
think in a top-down approach a lot of the
time, it can often be helpful to use a top-
down style like we would with recursion,
but simply save the intermediate answers.
For this we have an array like in DP that
we pass through the recursive calls.
When we need something we try looking
in the array before making the recursive
call.




Longest Common
Subsequence

For this problem, we want to find the
longest sequence of characters that is
found in two strings. The sequence must
be found in both in order, but doesn’t
have to be consecutive.

For example, “Happy Birthday” and “Have
a nice day” share the common
subsequence “Ha iday”

Solution to LCS

Does this problem have optimal
substructure?

How can we characterize a solution?
What does the recursive function look like
for finding the length of the LCS? To
answer this last question let’s think of
what is it a function of, and what the
possibilities are for a given value.

Minute Essay

Write a piece of code (or pseudocode)
that would solve one of the DP problems
we talked about today.

Assignment #6 is due a week from today.
Assignment #7 has been posted as well.
I'd like for it to be submitted by the 15th.




