Fun with Lists and
Templates

9-11-2003

Opening Discussion

What did we talk about last class? Who
wants to come up to the board and write
a vector based stack?

Memory Management in a
Linked List

What needs to go in the constructors and
destructors of a linked list class? What
about the nodes?

Making a node recursively delete can be
dangerous. The list itself should oversee
that.

Also, this is a case where deep copying is
required. If you don't want to write it you
have to explicitly disallow it.




Sentinels with Linked Lists

We can simplify our code for the doubly
linked list some if we make it a circular
linked list with a sentinel.

The sentinel is a special node that
represents the end of the list. For a
doubly linked list we make it circular and
it is both head and tail. This takes out
some of the special case logic for adding,
removing, etc.

Templates in C++

Data structures should generally work
with any type. In Java we did this with
inclusion polymorphism by making them
work with Object and all classes were
subtypes of Object. In C++ that won't
work.

Instead we can use templates which give
us parametric polymorphism.

Templates are typically used when the
same code can work for any type.

Syntax of Template
Classes

To have a class be a template class we
precede it with template<class
TypeName> where TypeName can be
anything you want and it just holds the
place of what the real type will be.

You can use that type in any part of the

class as you write it.

When you declare an object of that type
you tell it what the true template type is.




Templating our Linked List

To help you see this in code let’s go work
on our linked list that we started last time
and make it a template class.

That way the linked list will be able to

work with any type that you want it to
work with.

Template Functions

This will be part of a later lecture, but you
should know that you can also template
functions. When you do this, C++ will
perform type inference to figure out what
the type you are using is.

The syntax is very similar. This is what is
used for algorithms that can work with a

large variety of types running the same
code.

Static vs. Dynamic Linking

Templates are statically linked. That
means that the exact type is figured out
at compile time and used from that point
on. The Java mechanism is dynamically
linked. It typically doesn't know what
code will actually be executed until
runtime.

Static polymorphism gives more syntax
errors and is faster, but it is a bit limited
because you typically specify exact types.




Templates and Header
Files

Typically all template code will need to go
in header files. This is related to the
static linking of templates and the fact
that C++ maintains the compile and link
conventions of C.

If you put a template in a .cpp and use
separate compilation, you can only use it
with the types that it knows about when
the .cpp is compiled.

Makefiles and Code
Submission

Let's go back over makefiles and what you
need to have in your submissions. For
the test code (the stuff due today) I'm
only going to run “make clean” “make al
and not “make run” under the assumption
that your code isn't complete.

You will actually have two makefiles in
what you submit. One is in your C++
project directory and the other is in the
outer directory

III

Test Code

Let's talk a bit about what it means for
you to write and submit test code.

The idea is that you should make code
that tests the functionality of the code
that you are supposed to be writing. It
should be written such that after you fill in
the “real” code if it works then you will
feel quite confident that it works.




Minute Essay

What are the value of template classes?
How are they different from what you
normally did in Java? Imagine writing the
game from last semester in C++, what
things would templates have been less
than ideal for?

Remember that the design and test code

is due today by midnight and that the full
assignment is due next class.




