Static Linking and Direct
Access Files

9-16-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

How would you write a linked list if you
didn’t have pointers?

Data Structures Without
Pointers

All a pointer does is refer to another part of
memory. The strength of a pointer is that it can
refer to any part of memory.

If you have an array you can also refer to a
chunk of memory in the array with an integer
index. This way you can build data structures
with links that are only in static memory. For
this reason it is sometimes called static linking,
but it can also be in a vector which isn't static.

It requires a “context” and can't point to
anything.




Free Lists

To make this work we have to keep track
of which elements of the “array” we aren’t
using so when we need a new one we can
get one. This is typically done is a free
list. It's a linked list through all free
elements.

The simplest implementation is a stack. If

you make it a queue instead of a stack
you can have some undo abilities.

Implementation Details

The array where your elements are is of the
“node” type. You probably want to keep this
pool of nodes as a static value in the class. The
head of the free list would also be a static
variable.

In C++ you could overload the new and delete
operators on that type so that calls to new and
delete take elements from the free list or return
them to it. However, this doesn't give you
exactly the behavior you want with static linking
because new returns a pointer.

Static Linking and Files

Why would you use static linking in a
language with pointers?
Not using dynamic memory can be faster.
Even more important, pointers mean nothing
outside of that program, integer links can be
written to file and read back in.
If you have a pool of elements with a free
list going through it, writing the whole
pool to disk can be a very fast way to
save.




Binary Files

In PAD1 you learned about how to read
and write text data from/to FILEs in C.
You can also write binary data to them.
When you do this you write the exact bits
in a chunk of memory to disk or read
exact bits from disk to memory.

Doing this for large chunks can be much
faster than alternatives and it also
typically takes less space than text.

Doing itin C

If you want to use binary access you
should first call fopen with a ‘b’ in the
second string (like “rb+" to open for
reading but allow writing).

fread will read in data from a file to a
specified block of memory.

fwrite will write a block of memory out to
the disk.

Note that all pointers written are useless.

Functions for Direct
Access

What makes binary files truly powerful is
that ability to do direct access. That is to
say you can jump to any part of the file
and read the contents.

fseek is the command that lets you jump
to a given part of the file.

ftell will tell you where you are in a file at
a given time. This can be useful in some
situations.




Fixed/Variable Record
Length

If all the records you write to a file are the
same length then jumping to a random
one is easy. It works just like an array on
disk.

If you have variable length records then
you will also need an index that tells you
where each record starts. The index
basically a binary file with fixed length
records. They are “static pointers”.

Minute Essay

Assume you have a pool of 1000 Node
elements for a linked list. Show code to
write this to a file.

Remember that assignment #1 is due
today. There is an open lab this evening.
I won't be staying extremely late because
of the Distinguished Scientist that is
visiting.

Quiz #1 is next class.




