More Hashing and
Template Functions

9-23-2003

Opening Discussion

What did we talk about last class?

Do you have any questions about the
assignment?

Java has a class called StringTokenizer
that can greatly help when parsing out
text.

Talk about the “customers” view of the
application.

Example Code

Let's now look at some code for hashing
and operator overloading.

One interesting operator to overload is
the () operator. It allows you to use an
object the way you normally use a
function. Classes that have this
overloaded are typically called functors.

Resolving Collisions
without Linking

Linking is less than ideal for resolving
conflicts because it makes the code more
complex and adds some overhead to the
structure. It isn't exactly fast either if the
lists start getting long.

The latter part could be fixed by handling
collisions with more complex data
structures, but that makes the former
worse. Instead we'd like to just put
things somewhere else in the hash.

Open Addressing

The alternative to linking is to put
everything in the hash table. We do this
by making our hash function give us a
sequence of numbers. The first is the
“normal” hash value. If that is full though
we look at other ones.

Open addressing has problems with
deleting because the search times can be
longer than the number of collisions with
a given space.

Linear Probing

h(k,i)=(h’(k)+i) mod m

Start at h(k) then move forward one at a
time.

This has the advantage of simplicity but
we have problems with clustering. If a
block of entries is full then the search
times for both inserts and searches can be
long.

Quadratic Probing

h(k,i)=(h"(k)+c,i+c,i?) mod m
You can't use just any value of m, ¢; and
¢,- The reason is that as i goes from 0 to

m-1 you have to hit every element of the
hash.

The normal problem of clustering goes
away, but you still have a problem with a
collision that the sequences are the same.

Double Hashing

h(k,i)=(h,(k)+ih,(k)) mod m

So we start at a given position based on
the key and take steps whose size
depends on the key also.

h,(k) must be relatively prime to m (they
can share no common factors other than
1). This is easy if m is a power of 2 and
h,(k) always returns an odd number.

Rehashing

Obviously open addressing guarantees
and you never have a>1. However, it
also means that the hash can actually fill
up.

Typically when you are using this scheme
you keep a below a certain value and if it
every gets above that you have to
increase the size of the hash and
completely rebuild it.

Template Functions

We can template functions in a similar
way to how we template classes. The
main difference is that C++ will infer the
type used if that type is an argument to
the function. If you don't pass an
argument of that type it must be

specified. tenpl ate<cl ass WO ass>
voi d func(Myd ass &nt) {}

tenpl ate<cl ass Stuff>
voi d map(List<Stuff> &ist) {}

Templates with
Restrictions

Templates can also be used when you
don’t want to allow any type to be used.
The real general rule for templates is that
you can use any type that has definitions
for all the methods (including operators)
that are called in the code.

A templated sort might require operator<.
The indexed file class for assignment #2
might require methods that can read and
write with a FILE.

Iterators in the STL

STL stands for the Standard Template Library.
It is a significant component of the standard
libraries in C++. As you can guess from the
name, templates are used significantly to
provide flexibility. As was just discussed, the
template really only requires methods with the
right names that can fit in.

Part of the power of the STL comes from the
use of iterators. These are classes that let you
walk through a container in a uniform way.

More on Iterators

Iterators have overloaded ++, --, and unary *
operators. This allows you to walk through any
container with a uniform syntax.

The Iterator class itself is a public class inside
the container.
tenpl at e<cl ass Cont, cl ass Func>
voi d appl yToLi st (Cont &c, Func &map) {
for(Cont::iterator it=c.begin();
it!=c.end(); it++) {
map(*it);

Minute Essay

What are the advantages of open
addressing? What are some problems
with it?

The test code for assignment #2 is due
Thursday.

