Binary Trees

9-30-2003

Opening Discussion

Do you have any questions about the
quiz?
What did we talk about last class?

Do you have any questions about the
assignment? Compare this semester’s
project to that from last semester. You
have less freedom in what you do (though
you still have a fair bit of freedom in
that), but you have a lot more freedom in
how you do it.

Trees

A data structure that has a single root and
a single path from any node to the root is
a tree.

We mix metaphors for biological trees and
family trees when discussing them. We
also draw them upside down.

Terms: root, leaf, child, parent, sibling,
ancestor, descendent, height, depth, size.




Binary Trees

The most common type of tree that we
use is a binary tree where a node can
have two children called left and right.

We can traverse these trees by recursively
going to the left, then the right.
Depending on when we “visit” the current
node we get a pre-order, in-order, or
post-order traversal.

A breadth first traversal uses a queue
instead of a stack.

Sorted Binary Trees

Also called a binary search tree, these
trees have a complete ordering of their
elements and things that are less go to
the left while things that are greater go to
the right.

A search on this structure starts at the
root and walks down, picking the proper
side to step to until the desired node is
found. This has average case O(log n)
performance.

Successor and
Predecessor

Unlike a hash table, we can efficiently find
the successor of any given element of a
binary tree. A similar algorithm can be
used for predecessor.

If the node has a right child the successor
is the smallest element on the right. If
not then we walk up until we find a node
that this one wasn't to the left of.

These both to O(log n) time.




Insertion

To insert we act like we are searching
until we get to the place the node should
be. Once we get there we place the
node.

Obviously we have to be a bit more
careful because we can't go off the edge
of the structure before adding, but the
idea is basically the same.

Deletion

Deletion is easily the hardest operation on
a binary search tree. We have to replace
the current node with either the largest
element on the left or the smallest on the
right.

If nodes keep track of their parents this
can also be greatly simplified with
functions that find the smallest or largest
element of a subtree.

Minute Essay

What do you see as the biggest problems
with binary search problems?

Try to get assignment #2 to a place
where it compiles and does a fair bit of
the functionality so you can submit it.
Don't worry too much if it isn't all
complete, but there will be comparative
grading so if you have much less than
some others it won't reflect well.




