Function Support in
Hardware

2-10-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the
news?

Suppose that you write a program in
which main calls a function A which then
calls a function B. What happens in the
computer so that this can work? What if
B is recursive and calls itself a variable
number of times?

Procedures/Functions

Obviously, the ability to implement
procedure/functions is critical for any
modern programming language. Even in
assembly we really like to have it,
because it allows us to get some code
reuse by calling the same function from
multiple places.

The question is of course, what really
goes into implementing a function at a
low level.

Jump and Link

The most basic type of code reuse is
something like an old BASIC subroutine
(gosub). This was nothing more than a
jump that remembered where it came
from so it could jump back.

MIPS provides an instruction to help with
calling functions , the jal instruction. It
jumps to the label, but also stores the
address of the next instruction in $ra.

Program Counters

The way that stored program computers
typically work is to have an extra register
called a program counter (PC) that stores
the address of the next instruction that is
to be executed.

On a normal instruction, this value is
simply incremented to the next instruction
(always 4 bytes away on a MIPS
machine). A jump/branch just puts a new
value in the PC.

Stack and the Stack
Pointer

The old BASIC gosub was really limited in what
it could do though because all that it did was
keep track of where it should return to. For
many things we want more power.

This extra power comes from being able to store
values in memory in a way where each new
function gets its own little bit of memory. This
is implemented with the stack. The address of
the “top” of the stack is stored in $sp.

The stack grows from higher to lower
addresses.

Saving Registers

When we want to “save” a value of a
register so that it can be used for
something else, we push it onto the stack.
This is done by decrementing the stack
pointer and storing the proper value into
that memory.

When the values need to be taken off the

stack, popped, they are loaded and $sp is
incremented or set back up.

What and When to Save

A function can determine what it wants to
push to the stack, but there are certain
“rules” that it is supposed to follow.
It has to preserve the values in $s0-$s7, $gp,
$sp, and $fp. This means whatever was in
those when the function is called should be
back there when it ends.
It also needs to store any other registers it
might need before calling another function.
This only matters for non-preserved registers.

Burden on Functions

One thing to note about the way that
function calls are done in MIPS assembly
is that the burden of preserving the saved
registers, stack pointer, and the return
address is completely on the procedure.
If you don't do it correctly you can mess
things up far worse than is ever possible
in higher level languages.

Data Space on the Stack

You are probably more familiar with the
stack as where local variables are stored.
As you have seen so far, this isn't as
simple as what we might tell you in PAD2,
you only have to put values on the stack
that can’t be kept in registers.

Using the frame pointer register can help

when you have a function that puts things
on the stack and varies the stack size.

Character Data

MIPS provides instructions to load and
store individual bytes as well as the 32-bit
words. These instructions are Ib and sb
and they have the same format as the lw
and sw instructions only they take the
indicated byte and put it in the first byte
of the indicated register.

Code

Let’s write some Fibonacci code in MIPS
assembly.

Minute Essay

Why do you think that MIPS put the
burden of dealing with the stack squarely
on procedures instead of introducing
assembly language instructions that could
do a lot of the work for you?

Keep reading the book. I'm going to be
posting assignment #3 shortly.

