Addressing and Arrays vs.
Pointers

2-12-2003

Opening Discussion

What did we talk about last class?

Why make the assembly language
explicitly handle the job of dealing with
the stack?

Recursive Fibonacci

Let's take a few minutes to write a
recursive implementation of a function
that calculates Fibonacci numbers.




Immediate Instructions

Technically, when we use constants in
arithmetic or comparison operations we
use slightly different instructions that use
the I-type machine language format.

If we need more than 16 bits to express a
value the lui instruction lets us put an
immediate value in the upper 16 bits of a
register.

Design Principle 4

Make the common case fast.

This seems like a very common sense
principle but it isn't that straight forward.
The real question is trying to figure out
what the common case is. This can be
especially hard for a new instruction set.
A corollary of this is that the exceptional
cases can be slow. Should they add
complexity?

Addressing for Jumps

Because programs can be bigger than
64k, we can't use straight addressing for
all jumps, even for I-type instructions.

PC-referenced addressing is used for
conditional branches because they
typically don't go that far. It also uses a
word count instead of a byte count.
J-type instructions with 26-bit addresses
are used for the j and jal instructions.
They also hit only word addresses.




Arrays vs. Pointers

In C/C++, arrays basically are pointers.
However, you can write code that handles
it with array syntax or pointer syntax.
These two translate into somewhat
different assembly language. Your book
goes through an example, but they fail to
optimize the pointer approach. Let’s look
at this.

Code

Let's go through and do an example of
initializing the elements of an array to a
certain value using both syntax forms and
then convert them to assembly and see if
we can optimize it.

Are you familiar with the “pointer style”.
Can you read it that way? Could you
write it that way?

Minute Essay

A classic problem in theory of CS is the
3n+1 problem. Given the following
routine, the question is, does it terminate
for all possible inputs. Translate this to
assembly. You can use the rem function
like @ modulo (rem rdest, rnum, rdenom).

void TN1(int n) {
whil e(n>1) {
i f(n%2==1) n=3*n+1;
el se n=n/2;




