Computer Arithmetic

2-17-2003

Opening Discussion

What did we talk about last class?
Have you seen anything interesting in the
news?

Tracing Recursion

Before we leave the topic of MIPS
assembly let’s take a few minutes to look
at a little recursive function to do
factorials and trace what happens in
memory and with the stack as it runs.




Moving On

We are done down with our direct
discussion of the MIPS assembly
language. That doesn’t mean that you
are done using it though. We have laid
the foundation for low level problem
solving with it and now you will mainly
just be using that.

Starting today we look more at the details
of what the machine is doing to bring our
code to life.

Binary in MIPS

As you are well aware, the MIPS
architecture uses 32-bit words. This puts
a very real restriction on the sizes of
numbers that it can represent. This is
one of the most significant differences
between computer arithmetic and true
math.

If we are just interested in representing
natural numbers this gives us numbers
between 0 and 232-1 (4,294,967,295).

Overflow

If an operation tries to produce a number
that doesn't fit in this range, it is called an
overflow and bits are lost. In this chapter
we will be talking about commands that
help us deal with this if it happens.

Fortunately, it is something that we can
stay clear of a lot of the time because 4
billion is a reasonably large number. It

was much harder when an int only went
to 64k.




What are Negatives?

Computers also need to be able to deal
with negative values. One approach to
this is to use sign and magnitude. Here
we reserve one bit for the sign and the
others are the magnitude. This has a
number of drawbacks.

To come up with another approach we
should think about what it means for a
number to be negative and use that
definition to help us.

Two’s Compliment

Our definition helps us come up with an
alternate definition of negative binary
numbers for our machine. We want it so
that a+(-a)=0.

Negative numbers have the largest bit on
and leading ones. This effectively makes
the 231 bit negative and all the others
positive.

When loading bytes we might have to add
leading 1s to preserve a negative value.

Signed and Unsigned

Not all numbers need to be signed.
Memory addresses in particular are much
better unsigned. Because of this we have
to introduce some new comparison
instructions to do comparisons that are
specifically unsigned.

slt -> sltu

slti -> sltiu




Hexadecimal Numbers

Writing out a bunch of zeros and ones is
tedious to say the least so we would like
to have something that doesn't take as
many characters, but that can be
converted to binary more quickly than
decimal can.

Using base 16 we can put bits into groups

of four and do the quick conversion to the
characters 0-F.

Minute Essay

Write the number 153 in 16 bit binary,
then show its negative and how it would
be represented in hex.

Quiz #3 is at the beginning of next class.




