Bitwise Logic Operations

2-21-2003

Opening Discussion

What did we talk about last class?

What different logic operators do you
know about? What do they operate on?
What is implied by saying bitwise logic
operators?

Too many of you seem lost. How many of
you have honestly read 100 pages of the
book? You need to communicate
confusion, but you also need to read
enough and listen enough to be able to.

Logic Operations

In your C++ programming you have used
logic operators quite a bit. However, you
have mainly been using the short circuit
Boolean operators && and ||. (You might
think about what that means in assembly
language.)

We want to look at these and other logic
operators as more mathematical
operations on numbers now. In this
mode they act on them bit by bit.

Bit Shifts

When working with binary numbers, one of the
things that you might want to do is to shift
them.

A left shift (<< in C, sll in MIPS assembly)
moves all the bits to the left the specified
number of positions. This basically multiplies by
a power of two.

A right shift (>> in C, srl in MIPS assembly)
moves all the bits to the right the specified
number of positions. This basically divides by a
power of two.

The Shift Field

Remember the structure of the R-type
instructions? There was a field that we
didn’t use when we first came across
them, it was the shamt field. Those 5 bits
are used for these shift instructions. That
is enough because shifting more than 32
bits doesn’t make sense.

Because they only take two registers, the
rs field goes unused in these instructions.

AND

A bitwise AND does what you are used to
&& doing, but it does it on each and every
bit in the 32 bit number (it is & in
C/C++). The result is a 32 bit number
that only has bits on where the bits were
on in both operands.

This instruction has both a register and an
immediate form. Obviously, the
immediate form can only alter the lowest
16 bits of any number.

OR

A bitwise OR does what you are used to ||
doing, but it does it on each and every bit
in the 32 bit number (it is | in C/C++).
The result is a 32 bit number that has bits
on where bits were on in either of the
operands.

This instruction has both a register and an
immediate form. Obviously, the
immediate form can only alter the lowest
16 bits of any number.

XOR and NOR

MIPS assembly also provides XOR and
NOR operations. XOR (exclusive or, ~ in
C/C++) turns a bit on if one of the
operand bits is on, but not both. NOR is
short for NOT OR and is on only if both
operand bits are off.

XOR has both register and immediate
forms. NOR only has a register form.

A 1-bit ALU

We build all of | wosmec-n
the operations

we want from

basic one bit = ctwec-ew
logic v
operations.

o|=

How do we build them?

This figure we
saw previously
shows how they
could build a
single bit AND or N
ORI‘:nto a chip e I
with just
transistors. e ““n

URE 1019
MOSFET logic circuits, showing (a) an 4 and B circuit, and (5) an 4 or B circuit,

Minute Essay

Convert to binary, then do the operation
for 145 xor 78.

Remember to turn in your assignment #3
before you leave.

I won't be in town Monday and Tuesday
so there will be no class on Monday.
Hopefully that will lead to you getting
some graded assignments back on
Wednesday.

