Building an ALU

2-26-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the
news?

What is an ALU

An ALU, or Arithmetic Logic Unit is one of
the most basic types of structures that we
like to put on silicon when building a chip.
It basically handles the processing of
integer type expressions.

Note that it doesn’t control the
processing, it just does it when the right
signals come in. The nature of having
signals come in is probably worth taking a
second to discuss.




A 1-bit ALU

For a MIPS machine, we really want a full
32-bit ALU, but if possible, we want to try
to build it from many roughly identical
pieces.

Each of these pieces should be able to
perform the types of operations we want
on two single bit inputs.

If all we needed was AND and OR then
the simple circuit we saw last time would
suffice.

Boolean Algebra

As we saw last time, we are going to build
all of our circuits from basic logic gates.
Sometimes it is helpful to be able to write
our logic expressions in a shorter format
just to work through things.

Boolean algebra helps for this. Basically
you put your predicates (inputs) in as
variables then use + for OR and * for
AND. Note that it works fairly well for C-
style boolean logic.

A 1-bit Adder

We also want to have the operation of
addition. Unlike AND and OR the bits
aren’t completely independent so we have
a CarryIn and a CarryOut.

Carryln
Carryln

a —» a

ar — Sum

! "

b —>

CarryOut

CarryOut




The Schematic 1-bit ALU

This now gives us a
1-bit ALU that can
do +, AND, and OR ,
operations.

Note that we have
to add a new

option to our
multiplexor to get it °
to work.

CarryOut

Making a 32-bit ALU

The ideal for us would be that we could
build a 32-bit ALU from 32 1-bit ALUs.
For the most part, that is what we are
going to do.

In a simplistic way, chaining them
together gives us what we want.

What operations are we still lacking?
What commands have we discussed that
aren't here?

Including Subtraction

Allow the second
value to be the
bitwise inverse
and then add 1
with the first
carry-in.

This is why we
use two’s |
complement. carryout

Carryln
|




Implementing SLT

Another operation that we are lacking is
set on less than. We can implement this
with a simple subtraction. If the first
operand is less than the second, we get a
negative difference which can be quickly
detected by looking at the highest bit.
Putting this in the chip requires just a bit
of extra logic outside of the set of 1-bit
ALUs. And a “LESS” input for zeros that
are used for higher bits.

Checking Equality

Similarly, we need to be able to check for
equality for the beq and bne commands.

The easiest way to do this is once again
with subtraction. This time, we can OR
together all the output bits. If the result
is 0 then they were equal, otherwise they
were not equal.

The 32-bit ALU

This shows a very
trimmed down
version of the 32-
bit ALU that we
have just
designed.




Minute Essay

We skipped the part of the adder that
actually did a+b for the 1-bit. This is
equivalent to a logical XOR. Draw the
diagram for an XOR built from AND, OR,
and inverters.




