Carrying, Multiplication,
and Division

2-28-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the
news?

Abstracting Carrying

We saw last time that just waiting for the
CarryOut to propagate through all our 1-
bit adders was probably too slow.

In order to find a faster way of doing it,
we need to try to abstract the ideas of
carrying. We do this by trying to pull
apart what actually causes us to carry to
see if we can put it in a simpler format.




First Level

We can recognize that there are
basically two situations that cause a
bit to carry over. If both bits are on
then it “generates” a carry and the
carry will always happen.

=a b . e )
(‘;‘ :2 +‘b Alternately, if one bit is on we will
Cazg+p ik propagate” a carry if a carry comes

in.
C, = 0o + (o [Ey)

C, = G, + (P, Do) + (P, TP, [))
C; =0, + (P2 [01) + (P2 Cpy [9,) + (P, Ty Ty [€5)
C, = G *+ (P 18,) + (Ps 1P, [8,) + (s 0o, L, [8) + (P T, T, Oy L€5)

Second Level

We can further optimize this by grouping the ALU
into 4 bit groups that use the formula on the
previous slide and defining “super” signals.

Py = P2 [, [P, [Py [

P, = p, ps (s TP,

P, = Py 0Py Py [

P, = Pis Cpra Py P

Go = g5+ (s [8,) *+ (P [P, () + (s [P, TPy [45)

Gy =gy + (P )+ (Py s ) + (P, s 95 (01)

G, = Gy + (P (010) + (Puy [P 185) + (Pys [y Uy ()

Gy = G+ (Pus [24) + (Pos BPus () + (Pos Py TPy (0:2)

G =G, +(R [2)

C, =G, +(RG) +(R R T,

C, =G, +(R,[B) + (R, [R[G,) + (R, R R 2,)
Ci=G,+(RG,)+ (AP, [G) +(R, (R, (A G) + (AP, R R &)

Multiplication

Just as with addition, our best path for
understanding binary multiplication is to
make an analogy with “long” decimal
multiplication.

The two are done identically, but the
binary format is easier because each digit
can only be a 1 or a 0, two things that are
very easy to multiply by.




Simple Algorithm

We can implement our basic idea in an
algorithm to get the following circuit.
Note the lengths of both the product and
the multiplicand registers and the ALU.

Refinements

We can optimize this by
noticing that we can limit
ourselves to mostly 32-bit
components by adding in the
the upper half of the product
register and downshifting at
each step.

A third version can be created
by putting the multiplier in the
64-bit Product register.

Booth’s Algorithm

Does additions and subtractions, but only
at the “edges” of groups of ones.

The product now must store a signed
value and the right shift has to preserve
the sign.

The shifts that preserve the sign a
arithmetic shifts instead of logical shifts.

This algorithm works equally well with
negative numbers.




Multiply Instructions

mult and multu perform multiplication and
store the result in the special hi and low.
You can then use mflo and mfhi to move
those values into general purpose
registers.

To find out if there was an overflow from
the 32-bit low register you have to check
the high register.

Division

Let’s review the way that we do long
division, and try to apply it to binary
numbers.

As with multiplication, we will use this as
a foundation for developing our approach
to building the circuit. We will then look
at that approach and see how it can be
optimized.

Simple Algorithm

Again we can put our simple approach
into a circuit and again we face the
problem of needing a 64-bit ALU and
registers.




Refinements

We improve this by shifting the remainder left
instead of the divisor right and now can use a 32-
bit divisor and ALU. Also we shift before

subtracting to remove one step from the
arithmetic.

Shifting quotient bits into the remainder register
removes the need for a quotient register. Ends by
shifting back the remainder half.

Minute Essay

How well are you understanding the way
the ALU works?

Remember that the midterm is a week
from today.

To Nick from Renuka:
Clue #1: There is no desk in the back of coates.

Your Mission: To collect all the clues and have a wonderful
anniversary.




