Floating Point Numbers

3-3-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the
news?

Fractions in Binary

Once again, we can explain concepts in
binary by looking at their equivalent in
decimal. In this case, all the nhumbers to
the right of the point are multiplied by
negative powers of the base we are using.
Note that not all numbers can be equally
well represented in different bases. For
example, 0.1, requires an infinite
repeating series in base two.

Scientific Notation

We could do a “fixed point” notation by
arbitrarily placing a point after one of the
bits in our 32 bit numbers. However, we
can do better than that by borrowing from
scientific notation.

In this format the point “floats” because
we always multiply by some power of our
base. In normalized form, we make it so
there is only a 1 left of the point.

Floating Point Format

A word can be broken up in any number
of ways to store a floating point number.
The standard division between precision
and size range is to have 8 bits for the
exponent and 23 for the mantissa. One
other bit is used for the sign.

Double precision humbers use 64 bits.
They still have one sign bit, but use 11
bits for the exponent and 52 for the
mantissa. They have very good precision.

Gaining a Bit

The highest bit of the mantissa is
implicitly on so it is not stored.

This causes a problem for zero which
shouldn’t have a leading 1. An exponent
of zero implies that the number has a
value of zero. This has problems for
numbers between 1 and 2 and your book
doesn't explain that sufficiently.

Exponents and Sorting

The developers of the IEEE 754 standard
wanted to enable fast comparison with
integer compares. That is part of the
reason the sign bit is first.

For this reason the exponent is stored
with biased notation instead of two’s
complement. For single precision
numbers, the real exponent is the binary
value, minus 127.

Integer compares give the right result.

Addition of Floating Point
Numbers

First, align the points by shifting the
number with the smaller exponent.
Second, add the mantissas.

Third, check if it is normalized and if not,
normalize it and check for overflow or
underflow of the exponent.

Fourth, round the result to the proper
number of bits.

Unfortunately this is quite serial.

Multiplication of Floating
Point Numbers

First, add the exponents (we have to subtract
out the bias because it is in the sum twice).

Second, multiply the mantissas.

Third, normalize the results if they aren't
normalized and check for overflow or
underflow.

Fourth, round the result and determine the
sign.

Note that 1 and 2 can be done in parallel.

Subtraction and Division

Subtraction is done simply with addition
after the sign bit has been changed.

For division, it turns out to be faster to
take the multiplicative inverse, then do
multiplication so there isn't a separate
division algorithm either (other than that
required for finding the inverse.

Floating Point in MIPS

MIPS has a set of instructions for dealing
with floating point values.
add.s and add.d for single and double adds.
sub.s and sub.d
mul.s and mul.d
div.s and div.d
comparisons are done with c.x.s and c.x.d
where x can be eq, neq, It, le, gt, or ge

branch with bclt and bclf, for branching on
true and false.

More about MIPS

There are separate floating point registers
in MIPS, $f0, $f1, $f2, ..., $f31 They use
different load an store commands: Iwcl
and swcl. Double precision numbers are
stored in consecutive registers starting
with an even numbered one.

Note that we don't have as many
specialized registers. Nor are there
immediate forms. The constants have to
be put into global memory.

Minute Essay

Write the number -58.75 in single
precision floating point format.
Remember, there is one bit for the sign, 8
for the exponent, and 31 for the mantissa,
but the highest bit is just assumed to be
on.

