Single-Cycle Implementation

3-19-2003

Opening Discussion

- What did we talk about last class?
- Have you seen anything interesting in the news?
- Do you have any questions about the graded midterms?
 - I There was a 20 point curve
 - A=6, B=2, C=4, D=4, F=0

"Parsing" Instructions

- How does the datapath actually go from the loaded instruction to telling the ALU to do an add or whatever?
- We can try to figure this out by looking at the values for the fields of some basic instructions.
- We can also read section 5.3 which describes how it is done.

Single Cycle Implementation

- One of the keys of the datapath and the clocking is that there should be no feedback inside of a single clock cycle.
- This means that any components that are used more than once have to be duplicated because we can't have them used for multiple different calculations in a single cycle.
- A big key here is that we really need separate instruction and data memory.

Combining the Datapaths

Now we want to combine the pieces we looked at last time into a single datapath. We start with the R-type and memory instructions.

Adding Instruction Fetching

ALU Control

- Our ALU from chapter 4 only used 5 of the 8 options from the 3 input lines.
 - ooo AND, 001 OR, 010 add, 110 subtract, 111 set on less than
- Determining what to set these to uses an ALUOp (00 = lw/sw, 01 = branch, 10 = R-type) and the funct field for R-type.
- Implementing this can be done with a truth table because not all options are possible.

Datapath with Multiplexors Road Instruction | 25-21| | Instruction | 25-21| | Instruction | 25-1| | Instructi

Minute	Essay
--------	--------------

■ What did we talk about today?