Microprogramming and
Exceptions

3-26-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the

news?

What is the FSM that generates or
recognizes the language (10)*?

Microinstruction Fields

The main trick of designing the

microinstructions is defining fields that control

non-overlapping sets of control lines.

Label Any String

ALU control Add, Subt, Func code

SRC1 PC, A

SRC2 B, 4, Extend, ExtShft

Register Read, Write ALU, Write MDR

control

Memory Read PC, Read ALU, Write ALU

PCWrite control ALU, ALUOut-cond, Jump
address

Sequencing Seq, Fetch, Dispatch i




Our Microprogram

Label

ALU Co

SRC1

SRC2

Reg Co

Memory

PCWrite

Seq

Fetch

Mem1
Lw2

Sw2
Rformat1

BEQ1

JUMP1

Add
Add
Add

Func code

Subt

PC

3
Extshft
Extend

Read

Write MDR

Write ALU

Read PC

Read ALU

Write ALU

ALU

cond
Jump
address

ALUOut-

Seq
Dispatch 1
Dispatch 2
Seq

Fetch
Fetch

Seq

Fetch
Fetch

Fetch

Implementing the
Microprogram

Inputs from instruction

register opcode fiekd

Exceptions

We saw exceptions before with overflows
in numerical operations. The term
exception is used for MIPS to describe an
abnormal change in program flow caused
by something in the processor. Interrupts
come from external sources. Many
platforms use interrupt for both of these.

The primary outside source is I/O which is
in chapter 8.




Details of Exceptions

With what we know, there are two
possible exceptions: arithmetic overflow
and undefined instruction.

The PC value where the exception
occurred is stored in the EPC. The “cause
register” holds a values that tells us what
the cause was.

Multicycle Datapath with
Exceptions

FSM with Exceptions




Minute Essay

What would we have to do to the
microinstructions in order to handle the
exceptions?

Make sure you get assignment #4 to me
today.




