Exceptions and
Conclusions

4-7-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the
news?

What are the implications of long pipelines
on performance? In what ways do they
benefit it? In what ways do they hurt it?

Review of Exceptions

Recall that the idea of an exception is that
something happens in the code that we
need to deal with before the code can
continue to execute. The main example
that we've seen is when there is an
overflow in addition or subtraction.




Pipelined Datapath with
Exceptions

What

Happens? , O o 6
bt :

This shows us
what happens
when an :
exception occurs "7
and we have a
full pipeline.

Precise vs. Imprecise
Exceptions

Some architectures use imprecise
exceptions where the EPC might not hold
the address of the instruction that caused
the exception, just something close to it.
This helps with pipelines because the PC
is being incremented all the time.

The MIPS uses precise exceptions so
there is no guess work involved.




Superscalar Pipelines

Superscalar pipelines allow the processor
to issue more than one instruction in a
given clock cycle. The instructions must
fit certain types though. For example, our
MIPS architecture might be able to do one
branch or ALU as well as one load or store
in a single cycle.

This requires some alteration to some of
our basic components.

A Superscalar Pipeline

Added ALU and a more complex reg. file.

Loop Unrolling

Loop unrolling is an old optimization
technique. Superscalar hardware has
made this even more significant if we are
willing to use more temporary registers.
The reason is that we can be loading data
for the next array element while we do
the calculations on the first element.

This can bloat the code because we need
different versions of the loop.




Dynamic Pipelining

This allows other instructions to be
executed when one instruction is stalled.
Combining this with compilers intelligently
ordering instructions can significantly
reduce the number of instructions that are
wasted or even used non-optimally.

Speculative execution on branches if
required here if we execute things before
the branch that really determines if they
execute.

Diagram of Dynamic
Pipeline Scheduling

Instruction fetch Inorder issue
and decode unit

Modern Touches

Make sure to read sections 6.9-6.11 to get
a bit of a feel for what types of additions
you have in real modern processors and
what is required to build them.




Final Pipelined Datapath

Minute Essay

The end of the chapter compares VLIW
(what the Itanium uses) to superscalar.
VLIW forces the compiler to package the
instructions together such that the
hardware can execute them without
hazards. What are the good and bad
implications of this relative to the
superscalar approach?

We being chapter 7 next time.




