Measuring Cache
Improvements

4-11-2003

Opening Discussion

What did we talk about last class?

Have you seen anything interesting in the
news?

Memory optimizations for processors.
Last time I asked you to explain why
memory system optimizations are
considered valid reasons for chip
upgrades. Would anyone like to explain
this?

General Idea

We want to be able to measure how much
time the processor spends waiting on
memory and how the impacts the CPI.

If we use write-back or a good write
buffer with write-through, then reads and
writes have about the same penalty on
misses and we can consider general cache
misses, not special types. We might have
lower miss rates for I-cache than D-cache.




Analysis of Cache Impact
on CPI

We can calculate the CPI as the normal
CPI plus the average number of clock
cycles we wait for memory reads.

Every instruction comes from memory

plus what we do in loads and stores.
Assume there is no delay for cache access
while memory access takes 50 clock cycles.

For a realistic cache, assume it has a 5% miss
rate. Let's look at no cache, realistic cache,
and perfect cache scenarios.

Increasing Processor
Speed

We can mimic this simply by reducing the
CPI in the earlier examples. In reality we
increase the number of cycles in a miss
penalty. Since the cycles are shorter we
still get a speed boost, but by a smaller
factor than the clock rate speed boost.

Let's repeat out “realistic cache” scenario,
but now with a 100 clock cycle memory
delay.

Flexible Block Placement

We can potentially decrease the miss rate if we
are more flexibly in where we allow blocks to be
placed instead of using the direct mapped
method.

Fully associative caches allow a block to be
placed anywhere.

Set associative is between these extremes.
Here a block can go into some set of cache
blocks. If it can go in n places it is called an 7+
way set associative cache. An address maps to
a set and the set is searched for a match.




Example of Options

Comparison of mapping options and
where we have to search.

Direct mapped Set associative Fully associative

Block# 01234567 Set# 0 1 2 3

Data Data Data

1 1 1
Tag Ta Ta
Search Search Search

Cache Associatively

Higher associatively generally results in
larger hit times. We'd like to keep those
small so that hits don’t have to stall the
pipeline.

Since we have a choice of which element
in a set to replace when we resolve a
miss, we typically pick the block that was
used least recently. This works with
temporal locality.

Locating Blocks

We still break an 5 B82S
address into a tag,
and index, and a

block offset. The

index tells us what

set to look in. We

then compare the
tag to all the tags
in the set in parallel
to find the right
one.




Multilevel Caches

The first (L1) cache is on the chip with the
processor and goes very fast, but can't be
too large. To help reduce the cost of
misses many computers have an L2 cache
(now often on chip too) that takes longer
than L1 but is faster than main memory.
Even if the L2 only prevents a few percent
of the pulls from main memory it can be a
very significant improvement.

Minute Essay

What did we talk about today?

Remember to turn in assignment #6 to
me.




