Buses 4-23-2003

Opening Discussion

- What did we talk about last class?
- Have you seen anything interesting in the news?

Opteron Diagrams

Buses

- The different components of a computer have to talk. The way they do that is with a bus.
- We could use direct connections between components, but a bus is shared and cheap. It can become a bottleneck.
- High bandwidth often competes with low latency. We discussed this with DDRII.

Bus Makeup

• A bus is basically a set of lines that devices can connect to for communication. We have lines for control and for data.

Types of Buses

- Processor-memory: short and high speed.
- I/O: long with many types of devices. Don't connect directly to memory.
- Backplane: allow the other two to exist on a single bus.
- The later two typically use standard formats while the former is often proprietary. Some distinctions are getting smaller.

Bus Configurations

Given the types of buses there are many ways we can configure them. We would like to have maximum speed and flexibility.

Synchronous vs. Asynchronous

- Synchronous uses a clock to control the signaling on the control lines. Requires everything to run at the same clock rate. Must be a short bus as a result.
- Asynchronous buses aren't clocked and can be far more flexible, but they require more logic. A handshaking protocol must be used to get conversants talking properly.

Bandwidth Considerations

- Data bus width: how many bits can go across at one time?
- Separate lines: does one set of lines give both address and data?
- Block transfers: is there a burst mode where multiple words can be sent in succession?

Bus Arbitration

- Bus masters control who can "talk" on a bus at any given time. When you have multiple masters, decided which of them gets to use the bus is the arbitration.
- Granting bus requests is done with a triage type of system.
 - Daisy-chain: order gives priority (can be unfair).
 - I Centralized: single central arbiter.
 - Distributed with self-selection: each knows priority of others.
 - Distributed with collision detection

Minute Essay

- If buses can be bottle necks why do we use them so much in your computers?
- Remember that assignment #7 is due tomorrow.