Performance Metrics

1-31-2003

Opening Discussion

What did we talk about last class?
Have you seen anything interesting in the
news about the hardware market?

Do you have any questions about the
graded quizzes?

Definition of Performance

I didn't specifically state this last class so I
want to now. We define performance as
the inverse of execution time for a
particular program.

Given this definition, we can look at
relative performance between computers
and given performance measurements we
can make predictions of how long the
program would take to run on other
machines.




Amdahl’s Law

One of the most significant things to know
about improving performance of
computers is that focussing on one aspect
typically doesn't help that much.

T = Taffected
! ImprovementFactor

+ Tunaffected

The last term really kills you.

Hardware Independent
Metrics

Trying to draw any conclusions about
performance without taking the actual
hardware into account will utterly fail.

The book points to an example from the
70s where code size was used as a
metric. This is even worse on modern
machines where the instruction sets can
vary tremendously between architectures.

MIPS as a Metric

A very popular metric to use is “Millions of
Instructions Per Second”, or MIPS.

One big problem with this is that it depends on
the CPI or the program being used so the MIPS
measurement will vary for different work loads.
Also, different instructions get different amounts
of work done on different machines. In
particular, RISC machines often have a higher
CPI, but each instruction does less than one
CISC instruction would.




Different Types of MIPS

Another problem with MIPS is that it can
have different meanings.

To escape the problem of varying CPIs,
some companies started touting peak
MPIs. This is MPI assuming all
instructions execute at the speed of the
fastest instruction.

To fix this, the relative MIPs standard

came into use, but it only applies to one
program and needs a reference computer.

Normalized Arithmetic
Mean

As was mentioned last time, we have a
problem of compiling results when we do
benchmarking with multiple test
programs.

Instead of general weighting, we could
normalize to one particular system. The
problem with this is that if you do well in
benchmarks the base machine does
poorly in, you stand out. Also, results
vary by choice of normalizing machine.

Geometric Mean

To get around the problem of different
results with different normalization
machines, we can use the geometric
mean.

GeometricMean = n\/” NormalizedTime
1=

Unfortunately, this mean doesn't work to
predict running time. Then again, that
probably depends on the program
anyway.




My Take

The problem that I see with this chapter
is that they are requesting something that
CAN'T exist, but don't really say so.

They want a metric that is based on
execution time and has predictive abilities.
However, that can't happen without
knowledge of the exact workload and
getting the exact workload typically isn't
an option.

Minute Essay

What do you think is the ideal metric for
measuring performance? Is there one? If
not, what should we do looking at? Are
things like the PR rating using by AMD
worth anything?

You should not leave here without turning
in assignment #2.




