Communicating with
Computers

2-3-2003

Opening Discussion

What did we talk about last class?

AMD PR ratings: would you rather
compare MHz? Which is better?

What do you know about assembly
language programming? Have any of you
ever done any assembly.

Speaking Their Language

Your CS career has largely been about
learning how to talk to a computer.
However, everything you have said to
them has had to go through a translator
(or two) before getting to a point where
the machine could understand it.

Our objective in at this point is to get rid

of one of those translators to get you a bit
closer to the machine.

Assembly Language

Machines speak machine language (duh!).
We will be looking at that, but first we
want to look at something that is just a
step above it, assembly language.

Assembly language is basically a way that
we can encode machine language in
something that we can read/write a bit
more easily. Still, it is very near to the
machine code it will be turned into.

Our First Assembly
Instructions

add a, b, c
a=b+c
sub a, b, c
a=b-c
All operations on MIPS take three
arguments.

The arguments to these instructions must
be registers. There are 32 registers in
MIPS machines.

Design Principle 1

Your book occasionally puts in certain
“design principles” as general rules that
chip designers would want to follow.

Your first one is: “Simplicity favors
regularity.” This makes sense, the fewer
exceptions there are, the simpler it is to
build something that follows your rules.
We first see this in MIPS where
instructions “always have three
arguments”.

Design Principle 2

Smaller is faster (most of the time)

This relates to the speed of light limits. It
is why there are only 32 registers in MIPS
and why registers are faster than cache
which is faster than memory.

This was part of the problem that the
SPARC had. They had a “sliding” register
window. You could only use 16 registers
at a time, but they had something more
like 128 total.

Naming Registers on MIPS

Variable registers are called $s0, $s1, ...,
$s7.
Registers used to store temporary values
are called $t0, $t1, ..., $t9.
So the add operation might really look like
this

add $t0, $s1, $s3
All arithmetic operations are done on
registers in the MIPS architecture.

Memory, Addresses, and
Value

Since the processor can only store 32
items at one time to actually do work on,
it must go out to memory regularly to fill
those registers, or store back calculated
values.

You can view memory as a huge array of

bytes each single offset moves you one
byte further.

The Load Instruction

The primary instruction used to load from
memory on MIPS is the “load word”
command, Iw.

The three arguments to this are a register
to load to, a constant offset, and a
register base address.

lw $t0, 0($s0) # load *$sO to $tO

The offset should be a multiple of 4 so it
is word aligned.

Layout of Bits

Big Endian vs. Little Endian

The order of bytes in a number is a free
design parameter and is done differently
on different machines.

The chapter says MIPS is big endian while
the appendix says it can be either. 1
think the appendix was talking about
SPIM.

x86 chips are little endian.

The Store Instruction

The primary instruction used to store to
memory on MIPS is the “store word”
command, sw.
sw takes three arguments just like | w.

sw $t0, O($s0) # store $t0 to *$sO

Again, the offset should be a multiple of 4
so it is word aligned.

Register Optimization

Most of your program will use more than
32 variables (and far more than the 22
you really get to use on a MIPS chip). As
a result, compilers have to put in load and
store operations for some variables.

Obviously you want to do as few load and
store operations as possible. Figuring out
how to achieve this can require complex

algorithms like graph coloring algorithms.

Example

Let's see how well you understand this
now. Let’s write a non-recursive C
program to calculate Fibonacci numbers
and then translate it to MIPS assembly.

Minute Essay

Assume that you have the address of an
array of ints in $s0. Write a segment of
code to add the first five elements of that
array so it ends up in $s1.

Quiz #2 will be at the beginning of the
next class.

