Packaging of Instructions

2-5-2003

Opening Discussion

Do you have any questions about the
quiz?
What did we talk about last class?

Code for Summing an Array

In the last minute essay I asked you to
write code that would sum the elements
of an array. A fair number of you wrote
something that was roughly correct. Most
who didn't forgot to load in values.

The array is in memory (I stated its
address was stored in $s0). You have to
load the array values before you can add
them. What is the optimal way to do
this?

Binary Numbers

Because they matter for this section we
should do a quick review of binary
numbers, we'll do more later for chapter
4. For now all that matters in that binary
works just like decimal, but there are only
two possibilities for each digit (0 and 1)
and each new digit to the left is a higher
power of 2 instead of 10.

Ex. 101101=32+8+4+1=45

Encoding Machine
Language

The machine only stores bits (0 or 1) so
all instructions have to be encoded in
numbers this way.
This includes the operator and its
operands. (No “add” in memory)
Registers are encoded as follows:
$s0-$s7 -> 16-23
$t0-$t7 -> 8-15, $t8-$t9 -> 24-25
All MIPS instructions are 32 bits long.

Fields of a MIPS
Instruction

We can break an instruction into separate
fields, the value of each tells us what we
need to know.

op rs rt rd shamt funct

6 5 5 5 5 6
bits bits bits bits bits bits

op=opcode, rs=first source, rt=second source,
rd=destination, shamt=shift amount, funct=function code

This can’t work for everything. It has
problems with loads.

Design Principle 3

Good design demands good compromises.

In MIPS, they left all instruction 32-bits
long, but changed the layout for some.
The idea was that this reduced complexity
more than variable sized instructions.

The type of instruction just discussed is
called an R-type instruction. There are
also I-type instructions. They are used
for data transfer.

Fields of I-type

Data transfer instructions use an alternate
arrangement for their fields.

op rs rt address
6 bits 5 bits 5 bits 16 bits

op=opcode, rs=base register, rt=value register,
address=offset from base
This allows any offset within +21> or
-32,768 to 32,767.

Opcodes and Function
Codes

Every instruction that you can perform on
a MIPS processor is specified by some
combination of opcode and function code.
I-type instructions have to be specified by
the opcode alone. m
add O 32
sub O 34

Iw 35 n.a.
sw 43 n.a.

Stored-Program Computers

The idea of encoding instructions and
programs as numbers is the foundation of
modern computing. We build one type of
memory and mix both in it.

The semantics of this encoding of the
instructions is what defines the
“instruction set architecture”. Any
program that follows it can run on any
chip that uses it.

Self-Modifying Code?

It doesn't take a huge leap of the
imagination to see that if programs and
data are stored together you might be
able to modify code the same way you
can data.

This type of trick used to be used more
when people worked more closely with
assembly/machine language. It's
inherently unsafe though.

Branching Instructions

You need these to do anything fun. Conditional
branches only branch sometimes and give up
the power to do things like if and loops. They
really work like an if with a goto.

beq $s0, $sl1, Else
add $s2, $s0, $sO
El se:sub $s2, $s2, 1

Type op rs rt address
beq I 4 reg reg Label addr
bne I 5 reg reg Labeladdr

Inequalities?

If you want to check if one number is less
than another you can't use beq or bne by
themselves. Instead MIPS gives you a
helper instruction set on /ess than, slt.
This sets the first argument to 1 if the
second is less than the third.

Type op rs rt rd shamt funct

sit R 0 reg reg reg (1] 42

Time to Code?

If we have time let’s go ahead and try to
start that routine for calculating Fibonacci
numbers.

Minute Essay

Write a little piece of assembly code that
will double the value in $s1 until the value
in $t0 is zero. Note that this is a loop.
Feel free to make it a post check loop.

For next class make sure you have read

through 3.6 and have looked at appendix
A.

