
1

Locally Defined Procedures and
Sorting

9-20-2004

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What did we talk about last class?
■ Who can remember some different sorting

algorithms that you worked on in different
courses? How does each of those sorting
algorithms work?

3

Letrec: a let for Recursion

■ One problem with let is that the expressions
defining the values of a var can't refer to any
of the variables in the let expression. One
thing this does is completely eliminate
recursion since a recursive function must
refer to itself by name.

■ For this purpose, Scheme has letrec. It
looks the same and let and does basically
the same thing, but now expressions in it
can refer to names created in it.

4

Using letrec

■ One use for letrec is for when you need to
wrap helper functions like we saw for
reverse and Fibonacci. The helper functions
don't really belong in the global namespace
so letrec is better than define.

■ Let's rewrite write reverse-all, which does a
deep reverse, but with the use of a helper
function sitting in a letrec.

5

Sorting in Scheme

■ We can sort lists in Scheme just as we could
arrays in other languages. However, some
algorithms are better than others for lists.

■ Let's write insertion sort in Scheme. This
sort is nicely adapted for lists where
inserting elements is fairly easy.

■ Now let's see what we can do about writing
mergesort and quicksort, two sorts that we
would typically write recursively even in an
imperative language.

6

Minute Essay

■ How do you think these sorts we did today
compare to ones you might write in an
imperative language? Think in terms of
operations performed, not overall
performance. Do they make sense in
Scheme?

