
1

Abstracting Procedures

9-27-2004

2

Opening Discussion

■ Last time we didn't introduce anything new,
instead we spent time coding. What were
the problems we worked on coding? Can
someone review the approach to them?

■ Today we move onto a new topic that really
uses the functional nature of the language:
abstracting procedures/functions. I showed
you a tiny sampling of this at one time in the
past with a function that we passed another
function to. Does anyone remember what
that was?

3

Functions as Arguments

■ On of the great powers of functional
languages is that we can use functions just
like anything else. That includes the ability
to pass functions as arguments to other
functions.

■ We did this early in the semester in our map
function which applied a function to every
element of a list and returned a list of the
results.

■ A similar function is for-each that works on
functions that don't return values like display.

4

Passing Functions to Sorts

■ One way in which you could use the ability to
pass in functions is to make a sort
polymorphic.

■ This was mentioned before, but this is the
way to implement it.

■ Make one of the arguments to the sort be a
function that serves as a comparator.
Depending on the nature of the sort, a
simple predicate for less? could work or you
might want a full comparator that returns an
int.

5

Variable Argument Counts

■ Sometimes we would like to be able to call a
functions with a variable number of
arguments like they do with + and min.

■ You can do this with a lambda expression
that doesn't have the arguments in
parentheses.
 (lambda var expr1 expr2 ...)

■ In this form, var is a list of the arguments
that are passed in. You can then walk this
list to do what you want with the arguments.
This uses the implicit begin.

6

Functions as Return Types

■ Just as we can pass functions into functions,
we can also have functions return functions.

■ A simple mathematical example if this is
function composition which takes two
functions and returns a function that is their
composition.

■ (define (compose f g) (lambda (x) (f (g x))))
■ We'll see a somewhat different example of

this type of behavior in a few slides.

7

Ackermann and Math Functions
as a Hierarchy

■ You know from grade school that multiplication
is repeated addition and exponentiation is
repeated multiplication.

■ We don't give names to them, but one can
obviously add higher order math functions to
this hierarchy.

■ We can write a function that takes one argument
and returns a function of two values that does
the math operation of the proper level.

■ The Ackermann function is the nth level function
applied to n and n.

8

Currying
■ So far when we have had functions of

multiple variables, we have just written them
as that. There is another approach. Instead
of writing a function of two variables, we can
write a function of one variable that returns a
function of one variable.

■ This can obviously be extended to more
arguments as well.

■ This could be useful in your assignment
because you can write an add-grade
function that is curried that takes a grade
first and a student later after it is found.

9

Minute Essay

■ How close can you come to doing any of the
things we talked about today in other
languages? What is the language and how
close can you come to what part of our topic
for today?

■ Most languages give you the ability to do
something similar to one or two of the topics
from today. The real question is do you
realize it and how does it compare.

■ Remember that assignment #3 is due today.
 Quiz #3 is Wednesday.

