
1

Introduction to ML

10-11-2004

2

Opening Discussion

■ One the minute essay before the exam I
asked you to tell me what you think are the
greatest strengths and weaknesses of
Scheme. I want people to share those
thoughts.

■ There was one thing that no one brought up,
but which I feel is critical. It is related to
something a few people did mention.

■ Today we switch to ML, a newer functional
language that is very different from Scheme.

3

ML on our Machines

■ Dr. Konstam installed SML/NJ on all of
these machines. This is Standard ML of
New Jersey, which is one of the main
distributions of ML. You can access it with
the command “sml”.

■ It is like “scm” in the interface so you might
use vi to edit code. Note that vi color codes
properly for files ending with .sml and they
can be loaded in with the use command.

■ To get out of sml, press Ctrl-D.

4

ML Buzzwords
■ Obviously ML is a functional language so it

has minimal side effects and it allows the
use of higher-order functions.

■ ML is also polymorphic and it supports the
use of abstract data types. These are more
completely supported in ML than in Scheme.

■ ML does “rule-based programming” through
pattern matching.

■ Most importantly in my mind, ML is strongly
typed and statically typed. This means that
ML checks the type of everything before
running.

5

ML Numeric Expressions

■ ML uses infix notation and full expressions
end with a ';'.

■ Numbers constants look just like in other
languages except that '~' is used for negative.

■ “true” and “false” are boolean constants.
■ The order of operations for +, -, *, and / is

what you would expect. Also have div and
mod for integers.

■ When we get to calling functions, you can
use a syntax that looks much more like C than
Scheme (later we learn the distinctions).

6

Strings

■ String in ML look a lot like strings in C. We
put double quotes around them and can use
'\' for “escape characters” that can't be
represented other ways.

■ For characters ML uses something between
Scheme and C. You give a # followed by a
string of one character. (i.e. #”a”)

■ Strings in ML can be concatenated with ^
used an an infix operator.

7

Booleans

■ ML has the standard infix comparison
operators: =, <, >, <=, >=, <>. Note how
equality and inequality are different from C.

■ Reals can not be compared with = or <>.
■ We also have boolean operators in ML.

They are “not” which applies to a single
boolean as well as “orelse” and “andalso”.
The latter two are short-circuit operators.

■ not has higher precedence than arithmetic
operators so you often need parentheses
with it.

8

If-Then-Else

■ The conditional expression in ML is quite
straightforward: if cond then expr1 else
expr2. You must have an else.

■ The meaning of this is fairly straightforward.
Oddly, we don't use if that much in ML for
reasons you will see when we talk about
functions in a few days.

■ Note that ML is case sensitive so all these
things are lower case only. You can use
upper case in your function names though.

9

Type Consistency in ML

■ Scheme was very loose and free with types.
ML isn't. Expressions are checked for type
correctness in ML. Operators can't mix
types (1+2.0 is illegal as are #”a”^”ab” and
1/3).

■ Also, the types in the then and else of an if
must match.

■ Types can be coerced with functions like
real, floor, ceil, round, trunc, ord, chr, and
str.

10

Variables and Environment

■ The naming of values and functions in ML
works much like C as combinations of letters
and some symbols.

■ One difference is that a name starting with '
represents a type in ML.

■ In ML we bind values to names with val. It's
like define in Scheme. One thing to note is
that you can rebind a name to something
new later which makes some things much
easier than what you did in Scheme.

■ The most recent expression is stored in “it”.

11

Minute Essay

■ What do you see so far as the most
significant differences between ML and
Scheme?

■ Remember that assignment #4 if due on
Wednesday.

