
1

Lists and Tuples

10-13-2004

2

Opening Discussion

■ What are some of the things we talked about
last class? Yes, it was a very long time ago.

■ ML does not have variables in any true
sense. Let's look at a picture to see the
difference.

3

Tuples

■ ML has a construct called a tuple unlike
anything in Scheme. A tuple is a type that
groups other types together. A tuple is
written as a comma separated list in
parentheses.

■ So (1,”a”,3.0) is a tuple of type int * string *
real. Note the number of elements is fixed.

■ We can access the elements of a tuple with
a syntax like the following #1name, #2name,
etc. Note it is 1 referenced.

4

Lists

■ Like Scheme, ML makes extensive use of
lists, but they have some differences.

■ An ML list is a comma separated set of
elements in square brackets. All the
elements must have the same type.

■ So [1,2,3] is of type int list.
■ If you try to make a list [1,2,3.0] it will be an

error because the types are different.
■ The number of elements in a list is not fixed,

just the type.

5

Heads, Tails, Cons, and
Concatenation

■ Like in Scheme we have functions to pull
lists apart and other functions to put them
together.

■ Instead of car and cdr ML uses the more
intuitively named hd and tl for head and tail.
Note the types. If we have an int list then hd
is an int and tail is an int list.

■ nil or [] represents the empty list.
■ We cons a list with the infix operator ::, so

1::2::nil = [1,2].
■ The @ operator appends lists.

6

From Strings to Lists and Back

■ ML provides two functions that can be used
to help play with strings.

■ The explode function takes a string and
returns a list of characters so that you can
parse through the individual elements.

■ The implode function does the inverse so
that after you have altered the list of
characters you can get back to a string.

7

Basics of Functions

■ The simple way to define a function in ML is
with the keyword fun.
 fun <identifier> (<parameters>)=<expression>;

■ This creates a function that goes by the
provided identifier.

■ Note that ML infers the type of the function
and shows us that type. It should be noted
that -> binds right to left. This will matter later
on.

■ We only declare types if we don't want the
default. We do that with a colon and the type.

8

Calling Functions

■ We call a function much like we would in C
though in many cases the parentheses
aren't needed.

■ When we write a function of multiple
arguments it actually takes a single
argument that is a tuple. In that case we
need the parentheses to bind the tuple
together.

■ If a function is defined to use an outside
variable, it gets the value of the variable at
the time it is defined, not the calling time.

9

Comments

■ You will want to put at least some comments
in your code. At the very least, your name is
required.

■ In ML we specify comments with (* and *).
■ They can be nested the way that

parentheses are nested. This is very helpful
when you have to comment out chunks of
code that include other comments.

10

Minute Essay

■ Write two functions. One to cube a real and
one that takes a string and returns a string
that contains the input twice.

■ On the links page I added a link to a
programming language shootout. They do
some little speed tests on a number of
languages. The tests aren't perfect, but you
should note how well ocaml and mlton (an
ML implementation) do on many of the tests.

