
1

Scheme Basics

8-30-2004

2

Opening Discussion

■ Do you have any questions about the course
based on what we talked about last time?

■ Naughty Dog uses a LISP derivative for a lot
of their in-house work.

■ If you aren't on it yet, you should register for
the CS majors e-mail list. There are
directions at www.cs.trinity.edu.

■ Never reboot these machines unless they
are completely hung. The Xena machines
are single boot only so there is no reason to
reboot them.

3

The Scheme Environment

■ There are many environments that you use
use to program in scheme. On these
systems you can use scm or drscheme.

■ scm is a simple text implementation of
scheme.

■ DrScheme is a more sophisticated GUI
implementation.

■ If you look out on the web, you can find lots
of other implementations as well.

4

Numbers and Symbols

■ Symbols/names in Scheme are case
insensitive and can include numbers as well
as +, -, or . as long as it starts with a
character.

■ Numbers are recognized as one would
expect.

■ Commands in Scheme are given with
parenthesis around the command and
arguments.

5

Define and Quote

■ The define command allows up to binds
names to things. It has the following format.
 (define var expression)

■ We can also tell Scheme to not evaluate
something, but use it directly with the quote
command.
 (quote symbol)

■ The quote command can be abbreviated
with a single quote.
 'symbol

6

Prefix Notation

■ Scheme uses prefix notation for functions
and mathematical operators.

■ For instance, we can add two numbers by
doing something like this:
 (+ 5 7)

■ Note that this also allows us to have more
than two operands.
 (+ 3 5 7 11)

■ The operands can be function calls as well.
 (* (+ 3 5) (- 6 3))

7

Constructing Lists

■ The most common data type in Scheme,
above the atomic numbers and symbols, is
the list.

■ Lists are built with the cons function which
appends two elements together.
Technically, cons creates a memory cell with
two pointers and that cells points to the two
arguments passed to cons.

■ For a list, the first element is what we are
adding and the second is a list. We start to
process adding something to '().

8

Quoting Lists

■ For today, using cons to build all of our lists
can be a bit of a pain because we can't yet
build our own functions that put together
lists. Thankfully lists can also be quoted.

■ So you can define arbitrarily complex lists by
preceding whatever list you want with a
single quote.

9

Taking Lists Apart

■ Lists are taken apart with two somewhat
oddly named methods: car and cdr. These
come from their relation to the memory
setup on the IBM 704 where LISP was first
implemented. They stand for “contents of
address-register” and “contents of
decrement-register”.

■ car returns the first element of the list (which
could be a list itself).

■ cdr returns the remainder of the list.

10

Predicates

■ In addition to the three basic list functions,
Scheme has a number of functions called
predicates that return boolean values based
on their arguments.

■ In Scheme, #t is true and #f or () is false.
 number?
 symbol?
 boolean?
 pair? - is it a cons cell
 null? - is it ()
 procedure?

11

Comparison Predicates

■ Numbers can be compared with =, <>, >, <,
>=, or <=.

■ Symbols can be tested for equivalence with
eq?.

■ If we have two atoms items, but don't know
their exact type we can use eqv? to compare
them.

■ To test anything, including lists, for equality
we can use the equal? predicate. This is the
slowest option though.

12

Playing with Lists

■ Now that we know a little bit about lists and
some basics of Scheme, we should all log
int and start Scheme and play with it a little
bit.

13

Minute Essay

■ Write a line to give the list (A (B C) (D E))
the name mylist without using the quote
function (use cons). Then tell me what you
would get by doing the following.
 (car mylist)
 (car (cdr mylist))
 (cdr (cdr mylist))

■ Also remember that you can put in any
feedback you want on these.

