
1

Matches, Exceptions, and
Polymorphic Functions

10-25-2004

2

Opening Discussion

■ Last time we talked about I/O in ML. Can
anyone remind me of some of the details of
I/O? I/O in ML is somewhat different than in
Scheme. How is it different and why?

■ Given what we have talked about so far in
ML, what do you consider the most
interesting feature of the language?

3

Matches

■ Patterns can be used in part of a structure
called a match in ML. These appear in
function definitions, case expressions, and
exception handlers.

<pattern 1> => <expression 1> |
<pattern 2> => <expression 2> |
...
<pattern N> => <expression N>

4

Matches as Functions

■ In addition to the way we have defined
functions with fun, they can also be defined
with fn and a match.

■ The rec is only required if it is a recursive
function.

■ Without the val this can be used to define
anonymous functions.

val rec <name> = fn <P1> => <E1> |
<P2> => <E2> | ... | <PN> => <EN>;

5

Case Expressions

■ ML has a case construct that takes the form
below. Basically the case does pattern
matching. Notice how this is significantly
more powerful than the switch statements in
C/C++/Java because the match can include
constants of any type other than reals and
can also break up tuples or lists.

■ The if-then-else in ML is actually a case that
matches the patterns true and false.

case <expression> of <match>

6

Exceptions

■ Functions that don't produce valid answers
for all inputs can (and should) raise
exceptions.

■ ML has built in exceptions for things like “5
div 0”, “hd(nil:int list)”, or “chr(500)”.

■ We can define our own exceptions as new
types with the keyword “exception” followed
by type names separated by “and”. Type
names typically start with a capital letter.

■ When we need code to generate an
exception we use “raise”.

7

Exceptions with Parameters

■ Sometimes you want more information than
just the exception name. In that case you
can attach a parameter to the exception with
the keyword “of”

■ For example “exception Foo of string;”
makes Foo an exception type that has a
string type for the parameter.

■ When we raise one of these we have to
provide the parameter so in this case it
might be “raise Foo(“Bad Things.”)”

8

Handling Exceptions

■ If exceptions aren't handled, the execution is
terminated. If we want to handle an
exception we can use the syntax below.

■ If the expression raises an exception, the
proper matching exception is found and the
value will be the expression that match goes
to.

<expression> handle <match>

9

Local Exceptions

■ Exception types can also be declared locally
in let expressions.

■ The problem with doing this is that you can't
handle those exceptions outside of that let
expression because you are outside of the
scope in which the exception is defined.

10

Polymorphic Functions

■ We saw last time that ML has types that can
represent ANY type. These are polymorphic
types. One very polymorphic function is the
identity function, which given something
returns it.

■ There are some detailed limitations on
polymorphism we won't discuss, but which
your book does. Odds are they won't matter
to you.

11

Operators and Polymorphism

■ Certain operations prevent polymorphism.
They include arithmetic operations,
inequalities, boolean operators, string
concatenation, and type conversions.

■ Other operators allow polymorphism. These
include tuple operators, list operators, and
equality operators (=, <>).

■ The equality operators limit us to equality
types. Basically anything that doesn't
include functions or reals is an equality type.
 Equality types have two primes (''a).

12

Two Forms of Reverse

■ As a simple example, we can write two
forms of the reverse function. One that uses
if and one that uses patterns.

■ Notice that the types of these are different.
Why should this be the case?

■ To avoid this we could use the predicate null
(<list>) in the if, but using patterns is even
easier.

13

Minute Essay

■ Write a function called cull that takes a
predicate and a list. It should call the
predicate on each element of the list and if it
is true, put it in the list that is returned. Then
show how you would call this function with
an anonymous function.

■ You should make sure you start working on
assignment #6 soon.

