
1

Records, Arrays, and References

11-3-2004

2

Opening Discussion

■ What did we talk about last class? Let's go
look at code for the one function we didn't
get to last time and test the functions.

■ Do you have any questions about
assignment #7? Let's talk about the “long
term” options.

■ Given what you know so far, how would you
implement something like a struct from C in
ML? Is this approach satisfying? What
could be better about it?

3

Record Structures

■ ML has another way of grouping information
called a record structure. It turns out that
tuples are a special form of this with a
special syntax.

■ We denote a record structure by putting
labeled values inside curly braces.
 val myItem={name=”shoes”,quantity=5,price=3.0};

■ The type of a record has basically the same
structure with colons instead of equals and
the type on the right.

■ Order of the elements doesn't matter.

4

Extracting Field Values

■ Here we see that tuples are just records by
the similarity in syntax.

■ To get an field value out of a record we do
#<label>(<record>).

■ So in the example on the last slide we could
use #name(myItem) to get the name of the
item.

■ Tuples are just a special form of records
where the labels are consecutive numbers
starting at 1. So (v1,v2,v3) is short for
{1=v1,2=v2,3=v3}.

5

Records and Patterns

■ As one would expect, we can make patterns
that match records. These patterns have a
comma separated list of <label>=<pattern>,
where <label> is the name of a field in the
record.

■ You can leave some fields unspecified by
putting an ellipsis (...). However, ML must
be able to determine the whole type at some
point. This is another case where you might
use type and specify the type of an
argument.

6

More Records and Patterns

■ An example of the ellipsis would be
{name=n,...} if all you are interested in is the
name. Something else in the function must
provide the full type though.

■ Even more shorthand, you can leave out the
= and a pattern is you are good with having
the label name be the local name.

■ So {name,...} would pull off the name from
the record and let you refer to it locally as
just name.

7

Arrays

■ ML provides a mutable array data type that
we can use in applications where that will
speed up processing.

■ Functions for arrays are in the structure
Array.

■ Array indices start at 0.
■ Arrays.array(n,v) returns an array with n

elements all set to the value v.
■ Array.sub(A,i) gets the ith element of A.
■ Arrays.update(A,i,v) sets the value of the ith

location in A to v.

8

Reference Types

■ You can also create single elements are are
mutable by making them reference types.

■ We declare a reference type by prepending
the value with the keyword ref.
 val i = ref 0;

■ To get a value out of a reference we have to
use the operator ! As a prefix operator.
 !i=0 is true

■ We can assign the value of a reference
with :=.
 i := 2 makes !i=2 be true

9

While-Do Statement

■ ML does provide a statement for doing loops
with references. This should only be done if
it speeds things up or significantly simplifies
code.
 while <expression> do <expression>

■ Of course, this only makes sense if the
second expression modifies a mutable value
in the first first expression.

■ The value produced by a while loop is
always unit. This just furthers the idea that it
is not a functional construct.

10

Minute Essay

■ Which of the options for the last four
assignments do you think you are most
likely to do?

■ I'll be gone Friday through next Wednesday
so you have no class for a week. You will
need to be working on assignment #7
though. Don't try to do that with a few big
functions. Break the problem up a lot to
make it tractable.

