
1

Functors

11-15-2004

2

Opening Discussion

■ How do we create modules in ML? How
does this compare to other languages you
know? What can you see as some
downfalls of this method?

■ How are you coming on assignment #7? I
have now posted a complete description of
assignment #8 which is due a week from
today.

3

Revisiting the Binary Tree

■ Last time we took our binary tree code and
put it in a structure. This had the advantage
of allowing us to not pollute the global
namespace with the function names. By
specifying a certain a signature we were also
able to hide the deleteMin function.

■ There is still a general problem with our tree,
the fact that we have to provide a “less than”
function in every call. One way to fix this is
to use an outside definition.

4

The Ideal : A Tree for each Type

■ Notice that if we make the tree use an
outside function definition, the types of the
functions change to match the definition of
that function. This way we can get new
definitions for each definition of “less than”,
but in general having code that depends on
outside functions is ugly and the type for
deleteMin isn't exactly pleasing either.

■ We'd like some nice way of defining new
binary tree structures for each comparator
without copying the code.

5

The Solution : Functors

■ The way of doing this in ML is with functors.
A functor in ML is basically a mechanism for
creating new structures in ML. (This is not
the same as a functor in C++/Java which is
a class wrapping a single function.)

■ In its simplest form, a functor takes a
structure and produces another structure.
The form of the functor is
 functor <ident> (<struct name>:<signature>) =

<structure definition>
■ The structure definition is exactly what we

did last class.

6

How to use a Functor

■ The signature in the functor defines what
type of structure we want passed in. This
can be defined before the functor or in the
functor declaration.

■ We then have to define a structure that fits
that signature and “pass” it into the functor.

■ The syntax for applying the functor to a
structure is as follows.
 structure <ident> = <functor name>(<structure

argument>)
■ This way we can create a new structure for

each type or comparator.

7

True Power of Functors

■ In general, you can provide the functor with
multiple declaration types. These include
structures, values, functions, and
exceptions. In that situation they should be
preceded by the declaration keyword and
similar types can be put together with and or
all types can be separated by semicolons.

■ The use of functors in very much like a
template class in C++ other than the fact
that structures aren't instantiated the same
way and can hold more.

8

Code

■ Make our BST be a functor so that we can
create them to work with any comparison
function.

9

Minute Essay

■ Functors can give you remarkable flexibility
in producing code that works with different
types. It has a feel somewhat like dynamic
binding in OO languages, but it is still static.
How could you use a functor to help make
your assignment code more flexible for
assignment #8?

