
1

Data Hiding in ML

11-17-2004

2

Opening Discussion

■ What did we talk about last class?
■ For assignment #7, submit what you have

and start working on assignment #8. I've
made it so that you can read my version of
the XML parser in the code directory. Just
so you know, my code might require some
changes for the validating parser.

■ Does anyone have any questions about
assignment #8? Does everyone understand
the concepts of graphs and octrees?

3

Sharing

■ Sharing is a concept that we can use in a
signature to assure that two different names
refer to the same type. It can be done with
general types or structures.
 sharing type <t1> = <t2> = ... = <tN>
 sharing <struct1> = <struct2> = ... = <structN>

■ This is useful when a signature includes
multiple structures that have types in them.
If those internal structures are related, we
need to be able to specify that their
components have the same type.

4

Information Hiding

■ One of the most powerful aspects of
modules is that they allow information to be
hidden. This information can either be
functions or types.

■ This gives us power because it relates back
to the whole idea of separation of interface
and implementation. Anything that is hidden
can be changed without worrying about
breaking outside code.

■ ML provides several ways for modules to
hide parts of their implementations.

5

Hiding with Signatures

■ We have already discussed the ability of ML
to hide elements of structures by defining
signatures that leave out those elements.

■ We used this with our BST to hide the
deleteMin method so that outside code
couldn't accidentally call it with Empty.

■ We can specify a signature with this syntax.
 structure <ident> : <signature> = struct ... end

6

Abstract Types

■ ML also provides abstract types. These are
datatypes where the constructors are hidden
from the outside world. To make them
useful, when you provide the datatype
specification, you also provide the functions
that will be able to access the constructors.
 abstype <datatype def> with ... end

■ Nothing outside of with and end will have
access to the datatype constructors. In fact,
ML won't even print the type outside.

7

Local Definitions

■ Yet another way to hide certain elements of
code is with local definitions. A local
definition makes some definitions only
visible to a set of other definitions.
 local <defs1> in <def2> end

■ The definitions in <defs2> can use those in
<defs1>, but outside code will only be able
to see what is in <defs2>.

■ Using this, we could make deleteMin and the
exception in our BST local to delete so they
can't be see from the outside.

8

Opaque Signatures

■ ML97 also added one other feature that can
hide certain parts of structures. If the
signature of a structure is given with :>
instead of just :, all of the abstract types
(things specified with type) that would be in
the signature are hidden from outside users.

9

Minute Essay

■ Which form of information hiding in ML to
you think is best? Why? What are the
strengths of that method?

■ Quiz #5 will be next class and remember
that assignment #8 is due on Tuesday.

