
1

Procedures and Recursion 1

9-1-2004

2

Opening Discussion

■ What did we talk about last class?
■ Only one person actually did the whole

minute essay in the way I was hoping for.
Let's look at what it requires.

■ As you should have seen, the first
assignment has been posted on the website.

3

Functions

■ Being a functional language, Scheme is
heavily based on the concept of functions.
Last class we saw some built-in functions
like +, car, and cons. We also saw how
Scheme uses prefix notation. Instead of
doing f(x,y) we do (f x y).

■ Functions in Scheme are called lambda
expressions going back to their basis on the
lambda calculus. We can create on this
way:
 (lambda (parameter ...) body)

4

Calling a Function

■ Any function can be called the same way we
did with the functions we learned about last
class. So we could use a function that picks
the second element of a list like this:
 ((lambda (list) (car (cdr list))) '(4 5 6))

■ This would return 5 to us. Obviously is it
less than ideal to write functions every time
we need them. Instead, we need a way to
bind them to names like we did yesterday
with define.

5

Defining Names for Functions

■ There are two ways to bind a lambda
function to a name. The most obvious is like
this:
 (define name (lambda (param ...) body))

■ This is basically the usage of define we saw
before with the value being a lambda
expression.

■ There is also a shorthand version that
doesn't explicitly include the lambda
keyword:
 (define (name param ...) body)

6

More Predefined Functions

■ Scheme provides a shorthand for
successive applications of car and cdr.
Between the c and r you can place up to 4
a's or d's. So caar is the car of the car and
cddr is the cdr of the cdr.

■ The list function takes any number of
arguments and returns a list that has them in
order.

7

Conditional Expressions
■ Scheme provides two methods of

conditional execution. The simpler of the
two is pretty much like the if statement that
you are used to from other languages, but
with a semantic exception.
 (if condition consequence alternative)

■ The difference comes from the fact that we
don't have side effects. This if is more like
the ternary operator ?: in C/C++/Java. It
“returns” the value of either the
consequence of alternative. The latter can
be left out.

8

The cond Expression

■ Scheme also provides a way of choosing
between multiple options. This is the cond
expression.

■
■
■
■
■
■
■ This returns the value of the expression

following the first true condition.

(cond
(condition1 expression1)
(condition2 expression2)
...
(conditionN expressionN)
(else alternative))

9

Boolean Expressions

■ We have seen predicates that could be used
for the conditions in if and cond. Sometimes
we want to build more complex logic. For
the we have the operators and, or, and not.

■ and and or can take multiple arguments and
both do short-circuit evaluation.

■ not takes a single argument and returns the
logical negation of it.

10

Recursion
■ Recursive functions are functions that call

themselves. We can use these functions in
most language, but many people shy away
from them, even when they are the easiest
way to do things. Because of the lack of
side effects, recursion is the primary way we
get anything to happen multiple times in
Scheme and other functional languages.

■ Instead of a loop variable that is altered, we
have a function that calls itself with an
altered argument and the argument acts like
the loop variable.

11

More Recursion

■ Any recursive function must have a
conditional to terminate the recursion. There
must be some situation that prevents the
function from calling itself.

■ In Scheme we can write recursive functions
that play with lists when we don't know exact
positions of things. Let's write some
example functions that do this.

12

Minute Essay

■ Write a functions which, given a list, will
return a list that contains every other
element of the list.

■ How comfortable are you with recursion? It
can be a tough topic, but you can take
comfort that we have at least two more
chapters on it.

