
1

Concluding ML

11-19-2004

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment? I'll be putting up an early
description of assignment #9 up soon.

■ How well do you have to use the octree?

3

ML is Functional

■ ML is a functional language like Scheme
and when programmed in a functional way,
there are no side effects.

■ Also, being functional, we have the ability to
easily create higher order functions. This
means that we can pass functions into other
functions or have functions return functions.
A common case of the latter is currying
which ML makes quite easy to do.

■ Repetition is achieved through recursion.

4

ML is Strongly, Statically Typed

■ One of the main ways that ML differs from
Scheme is in the typing system.

■ Scheme is completely dynamically typed.
Outside of unbalanced parentheses, pretty
much all errors are runtime errors.

■ ML has static typing for everything, but in
general it doesn't require you to tell it the
types of things. It figures that out for you. It
also has polymorphic types so it makes your
code as general as possible.

■ Learning to understand error messages.

5

Patterns

■ Another way ML differs from Scheme is the
use of patterns. We use patterns in
functions, case statements, and exception
handling. The basic idea is that we can
have different chunks of code execute
depending on the pattern of an argument.
This can almost eliminate if statements.

■ Patterns also give us a nice way to pull parts
out of constructs like lists, tuples, records,
and datatypes. This can almost eliminate
functions like hd, tl, and #1.

6

Custom Datatypes in ML

■ Another significant difference between ML
and Scheme is that ML allows us to build
custom datatypes. These constructs are
similar to enums or unions in C, but are type
safe and far more useful. They allow us to
build recursive data types without having
pointers.

■ Being able to use these datatypes requires
having patterns. That's a big part of why this
style of datatype isn't used in other
languages.

7

Modules in ML

■ ML also provides us with constructs for
doing larger scale programming, particularly
in the form of structures and things related
to them.

■ By providing our own signatures to
structures we can hide some of their details.

■ Using functors ML lets us create new
structures from existing ones.

■ Further hiding of implementation is given
with local declarations, abstract types, and
opaque signatures.

8

Looking at Code

■ Let's go look at the code for the XML parser
that I have put on the web. We can also
look at the binary search tree code that we
did. Between the two, we can see most of
the interesting features of ML in use.

9

Minute Essay

■ What features of ML do you like the best?
What features do you like the least? If you
could translate some ML features to another
programming language, what features would
you want to put in your favorite language?

■ Remember that assignment #8 is due on
Monday.

