
1

Quick Introduction to O'Caml

An Object-Oriented Functional Language
12-1-2004

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignments?

3

Basics

■ O'Caml, short of Objective Caml, is a
derivative of ML. In that regard, it has many
of the features that you are used to from ML.
 However, it is not so similar that you could
just sit down and start

■ One significant difference between ML and
O'Caml is that O'Caml has more imperative
aspects to it, or makes it easier to do things
in an imperative way.

4

Simple Differences

■ Operators for reals include “.”.
■ No fun or val. Use let to define things. “in”

is optional for local declarations.
■ Recursive functions need to be defined with

“let rec”.
■ O'Caml uses ';' a LOT more than ML. Every

statement ends with “;;” and both lists and
records are separated by ';' instead of ','.

■ A function type can be declared with the
keyword function instead of the shorthand.
 let func = function(x,y) ->x+y;;

5

Patterns
■ O'Caml also makes extensive use of

patterns.
 match <exprt> with <p1> -> <e1> | ...

■ Patterns can include multiple
constant/wildcard options or ranges of
characters.

■ You can't match a pattern on multiple
arguments. To match on a curried function,
you make the match separate using “match
<expr> with <p1> -> <e1> | ...”

■ Matches can have guards (when) or use
character intervals.

6

Types

■ You have to declare record types, and tuples
aren't records. To get something out of a
record type you use the “dot” notation or
pattern matching. Some fields can simply
be eliminated in a pattern. The labels are
like constructors that can be hidden.

■ You can create a revised copy of a record by
giving {<name> with <l1>=<e1>;...} where
name is an existing record.

■ type in O'Caml works like both type and
datatype in ML.

7

Imperative Programming
■ O'Caml has mutable types including vectors

denoted with [|...|]. The elements are
accessed with “.(<index>)” and you can
mutate them using <-.

■ Character strings are also mutable. We
access their elements with “.[<index>]”.

■ The keyword “mutable” can be put in front of
a record name to make that field mutable.

■ O'Caml also has reference types.
■ We can do I/O similar to ML and commands

can be sequenced with a single ';' between
them.

8

Iteration and Thoughts

■ O'Caml provides both for a while loops to do
iteration.

■ My only problem with the mutable stuff in
O'Caml is that strings are mutable. That will
make it much harder to build good
parallelizing compilers.

■ I will say though that the serial compilers for
O'Caml do a very good job. The Great
Computer Language Shootout shows this.

9

Classes and Objects in O'Caml

■ As the name implies, O'Caml has objects in
it and classes as well.

■ Classes are defined as follows
 class <name> = object <methods and vals> end;;

■ Methods are created with the method
keyword and members with val. A member
can also be declared mutable.

■ Methods are called with “#” instead of “.”.
■ Immediate objects leave out the class

declaration. “object ... end” These can
occur in expressions.

10

More on Classes
■ Classes in O'Caml allow inheritance as well

as public and private methods.
■ O'Caml also provides a way to easily do

functional object-oriented programming,
even with inheritance. Functions that would
normally mutate an object need to return a
new object of that type. The problem is that
the exact type of a base class isn't the same
as for derived classes. A {< val=newVal; ...
>} syntax gets around this.

■ Calling methods can have strong typing with
open types.

11

Last Slide on Classes

■ Classes get to name and refer to this (called
self in O'Caml literature).

■ Classes can be parameterized.
■ They allow multiple inheritance.
■ O'Caml provides subtyping and inclusion

polymorphism in ways that are distinct from
inheritance.

■ Basically, class stuff in O'Caml is complex,
but very powerful.

12

Libraries

■ O'Caml has very extensive built-int libraries.
These include not only things like data
structures, but also graphics and
concurrency.

■ It also includes tools for doing lexical
analysis and parsing.

■ Basically, O'Caml comes with a depth of
libraries and tools that is more Java in some
regards. Unfortunately it doesn't seem quite
as well documented to me.

13

Learning More

■ You can learn more about O'Caml at
ocaml.org. This site has links to downloads,
manuals, and even a book in PDF format.
For my learning style I actually liked the
manual in PDF better than the book in many
ways.

14

Minute Essay

■ Next time I teach functional, should I
consider using O'Caml instead of ML? Why
or why not?

