
1

Quick Introduction to Haskell

12-3-2004

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What are some of the features of O'Caml

that we discussed last time?
■ Do you have any questions about the

assignments?

3

Basics

■ Haskell is “pure” functional language that has
roots in ML, but is more distant than O'Caml.

■ Haskell can infer types like ML and O'Caml,
but they also suggest users provide intended
types. The compiler will check if they are
valid and give an error if not.

■ Haskell has lazy evaluation which has some
really major implications.

■ You never use fun, val, or the O'Caml style
let. Declarations are just written as
equations.

4

Simple Changes

■ Haskell doesn't use ;.
■ They use :: for type and : for cons. List

concatenation is done with ++. Lists otherwise
look like ML, but they have some pretty
impressive abilities we'll talk about later.

■ Haskell also had regular looking tuples.
■ For some reason the interactive environment

doesn't let you define functions. That's just
one environment though. Other
implementations are optimizing compilers with
no interactive environment.

5

User Types in Haskell

■ We can define our own type in Haskell with
the “data” declaration. The syntax looks a
lot like ML, but has some difference.
Largely, the parameters follow the type
name and no “of” is used after the
constructors.

■ The type keyword works like in ML to give a
new name to a type.

6

List Comprehensions

■ This is something that is unique to Haskell
as far as I know. Basically, we can construct
lists in a way that reads very much like set
theory in math. For example
 [f x | x <- lst]

■ This makes a list of elements f(x) for all x in
the list lst.

■ The code to the right of the | is called a
generator and we can have multiple of them
with comma separation.
 [(x,y) | x <- lst1, y <- lst2]

7

More List Power

■ You can also put guards on the list
generation. These are boolean expressions
that go with the generators in comma
separations. Only combinations that satisfy
the boolean are selected.

■ Let's look at code for quicksort using this
power.

■ Lists can also be made with sequences like
[1..10] or [3..99]. What is more, Haskell
allows infinite lists such as [5..], but I don't
recommend doing that at the top level.

8

Strings and Lambda Abstractions

■ In Haskell, strings are nothing more than
shorthand for lists of characters.

■ Thankfully, characters use the syntax of a
single character in single quotes.

■ A “lambda abstraction” is basically an
anonymous function. We define them as
follows.
 \<args> -> <expression>

■ Haskell allows the definition of infix
operators as long as they contain only
symbols.

9

Sections and Prefix Operators

■ Haskell allows the partial evaluation of infix
operators (since they are curried).
 (+x) is like \y -> y+x

■ Similarly, by putting an operator in
parentheses we get a prefix operator. This
is just like putting “op” before an operator in
ML.

■ A prefix operator can be changed to an infix
operator by putting backwards single quotes
around it.
 5 `elementOf` lst

■ Precedence of infix ops can be set.

10

Lazy Evaluation

■ Haskell can have the infinite lists we saw
before because it uses lazy evaluation. That
implies that a function doesn't evaluate its
arguments unless it actually needs them.

■ Let's look at some code that demonstrates
the effect of lazy evaluation.

11

Patterns in Haskell

■ Haskell has patterns very much like ML or
O'Caml with _ as a wildcard. They use @
for “as”.

■ Patterns in Haskell can have guards,
multiple boolean tests on each pattern.

■ Haskell has a case-of expression that does
a match like in ML.

■ By putting a ~ in front of a pattern we make it
lazy. It now matches anything, but won't be
processed until needed.

12

let and where

■ Haskell and a let similar to ML, but without
the end.

■ Haskell also has a where clause that can go
after all the matches in a function or case
statement. This allows you to define a value
that is used across many patterns in a
function.
 f x y | y<z = ... | y==z = ... | y>z = ... where z=x*x

13

Type Classes

■ Haskell allows you to define things called
type classes. A type class produces a type
of polymorphism that is more restrictive than
the parametric polymorphism of the
parameterized types.

■ You define a set of functions that must be
defined for types in that class.

■ You can also use inheritance to make
subtypes of type classes.

14

Modules and I/O

■ Haskell also provides functionality for doing
I/O as well and for creating modules. We
don't have the time to get into the details of
those systems though.

15

Minute Essay

■ So what are your thoughts about Haskell?
What would you think about it being taught
in future offerings of functional?

■ I like the idea of teaching at least two
functional languages in this course. What
languages would you teach and how long
would you spend on each one? What extra
topics would you cover? Which ones would
you throw out?

