
1

A Bit of Haskell and Concluding
Remarks

12-6-2004

2

Opening Discussion

■ What are some of the neat features we
talked about in Haskell?

■ Do you have any questions about the
assignment?

3

Sections and Prefix Operators

■ Haskell allows the partial evaluation of infix
operators (since they are curried).
 (+x) is like \y -> y+x

■ Similarly, by putting an operator in
parentheses we get a prefix operator. This
is just like putting “op” before an operator in
ML.

■ A prefix operator can be changed to an infix
operator by putting backwards single quotes
around it.
 5 `elementOf` lst

■ Precedence of infix ops can be set.

4

Lazy Evaluation

■ Haskell can have the infinite lists we saw
before because it uses lazy evaluation. That
implies that a function doesn't evaluate its
arguments unless it actually needs them.

■ Let's look at some code that demonstrates
the effect of lazy evaluation.

5

let and where

■ Haskell and a let similar to ML, but without
the end.

■ Haskell also has a where clause that can go
after all the matches in a function or case
statement. This allows you to define a value
that is used across many patterns in a
function.
 f x y | y<z = ... | y==z = ... | y>z = ... where z=x*x

6

Type Classes

■ Haskell allows you to define things called
type classes. A type class produces a type
of polymorphism that is more restrictive than
the parametric polymorphism of the
parameterized types.

■ You define a set of functions that must be
defined for types in that class.

■ You can also use inheritance to make
subtypes of type classes.

7

Course Recap

■ During this course you have learned how to
program in two distinct functional
programming languages: Scheme and ML.

■ In doing this, you have learned how to think
in a functional way doing things like using
recursion to repeat processes. You have
also mastered the use of immutable lists to
store and process data.

■ Hopefully you have also improved your
general programming capability and can
tackle more different types of problems.

8

The Meaning of Types

■ One benefit of programming in both Scheme
and ML has been that you have been
exposed to two very different ways of
handling type information.

■ Hopefully this has led you to having a much
deeper understanding of what types really
are and their role in all programming
languages.

■ With any luck, the next time you write a
program in C, C++, Java, or some other
language, you will think more about types.

9

Course Objectives

■ While the most significant aspect of this
course was to give you an understanding of
functional programming, I also had other
objectives that I laid out at the beginning of
the semester.

■ The most important of these was to make
you think. Next year you might well not
remember the syntax a case or cond, but
you should still take with you the concepts of
the functional approach and be able to view
problems from a different perspective.

10

Course Evaluation

■ There is no minute essay today. Instead,
you will fill out course evaluations. These
are very important. Next semester, I will
read them and I use the feedback to help
me the next time I teach the course. The
University also takes them very seriously so
please give them thought.

■ I'll send out an e-mail about a final review
time.

■ Assignment #9 is due today and #10 is due
on the 16th.

